Схема простой паяльной станции с феном. Самодельная цифровая паяльная станция DSS

Привет ВСЕМ! Пополняем свою лабораторию самодельным инструментом - на этот раз это будет самодельная цифровая паяльная станция DSS. До этого у меня ничего подобного не было, поэтому и не понимал, в чем ее плюсы. Пошарив по интернету, на форуме «Радиокота» нашел схему, в которой использовался паяльник от паяльной станции Solomon или Lukey.

До этого все время паял таким паяльником, с понижающим блоком, без регулятора и естественно без встроенного термо-датчика:

Для будущей своей паяльной станции, прикупил уже современный паяльник со встроенным термо-датчиком (термопарой) BAKU907 24V 50W. В принципе подойдёт любой паяльник, какой Вам нравится, с термо-датчиком и напряжением питания 24 вольта.

И пошла потихоньку работа. Распечатал печатку для ЛУТ на глянцевой бумаге, перенёс на плату, протравил.

Сделал также рисунок для обратной стороны платы, под расположение деталей. Так легче паять, ну и выглядит красиво.


Плату делал размером 145х50 мм, под покупной пластиковый корпус, который уже был приобретён ранее. Впаял пока детали, какие были на тот момент в наличии.

R1 = 10 кОм
R2 = 1,0 МОм
R3 = 10 кОм
R4 = 1,5 кОм (подбирается)
R5 = 47 кОм потенциометр
R6 =120 кОм
R7 = 680 Ом
R8 = 390 Ом
R9 = 390 Ом
R10 = 470 Ом
R11 = 39 Ом
R12 =1 кОм
R13 = 300 Ом (подбирается)
C1 = 100нФ полиэстр
C2 = 4,7 нф керамика, полиэстр
C3 = 10 нФ полиэстр
C4 = 22 пф керамика
C5 = 22 пф керамика
C6 = 100нФ полиэстр
C7 = 100uF/25V электролитический
C8 = 100uF/16V электролитический
C9 = 100нФ полиэстр
С10 = 100нФ полиэстр
С11 = 100нФ полиэстр
С12 = 100нФ полиэстр
Т1 = симистор ВТ139-600
IC1 = ATMega8L
IC2 = отпрон МОС3060
IC3 = стабилизатор на 5 v 7805
IC4 = LM358P опер. усилитель
Cr1 = кварц 4 мГц
BUZER = сигнализатор МСМ-1206А
D1 = светодиод красный
D2 = светодиод зелёный
Br1 = мост на 1 А.

Для компактности плату сделал так, что Mega8 и LM358 будут располагаться за дисплеем (во многих своих поделках использую такой метод - удобно).


Плата, как уже говорил, имеет размер по длине 145мм, под готовый пластиковый корпус. Но это на всякий случай, т.к пока ещё не было силового трансформатора и в основном от него зависело, каким будет окончательный вариант корпуса. Или это будет корпус БП от компьютера, если трансформатор не влезет в пластиковый корпус, или если влезет, то готовый пластиковый покупной. По этому поводу заказал через интернет трансформатор ТОР 50Вт 24В 2А (они мотают на заказ).


После того, как трансформатор оказался дома, сразу стал ясен окончательный вариант корпуса для паяльной станции. По габаритам вполне должен был влезть в пластик. Примерил его в пластиковый корпус - по высоте подходит, даже есть небольшой запас.


Как уже говорил, что когда разрабатывал плату, то в первую очередь, конечно, учитывал размеры пластикового корпуса, поэтому плата в него подошла без проблем, только пришлось подрезать немного углы.


Переднюю панель для паяльной станции, как и в других своих поделках, сделал из акрила (оргстекла) 2мм. По оригинальной заглушке сделал свою. Пленку до окончания работы не снимаю, чтоб лишний раз не поцарапать.



Контроллер прошил, плату собрал. Пробные подключения готовой платы (пока без паяльника) прошли успешно.

ВНИМАНИЕ! Перед подключением своего LCD изучите даташит на него!! Особенно выводы 1 и 2!". Плата разводилась под LCD Winstar WH1602D. Даже у этого производителя у дисплеев между B и D есть разница.
На схеме индикатор, на вывод 1 которого подаётся +5V, а вывод 2 - общий!
Ваш индикатор может отличаться цоколёвкой этих выводов (1- общий; 2 - +питания).

Собираю все составные части паяльной станции в одно целое. Для паяльника поставил «Соломоновский» разъём (гнездо).

Подошло время для подключения самого паяльника и тут облом - разъём. Изначально в паяльнике был установлен такой разъём.

Пошёл в магазин за разъёмом. В магазинах у нас в городе ответной части не нашел. Поэтому в станции гнездо оставил, какое было, а на паяльнике разъём перепаял на наш советский от магнитофонов (СГ-5 вроде, или СР-5). Идеально подходит.

Теперь упаковываем всё в корпус, крепим окончательно трансформатор, переднюю панель, делаем все соединения.


Наша конструкция приобретает законченный вид. Получилась не большой, на столе займёт не много места. Ну и финальные фото.


Как работает станция, можно посмотреть это видео, которое я скинул на Ютюб.

Если будут какие нибудь вопросы по сборке, наладке - задавайте их , по возможности постараюсь ответить.

P.S.
По наладке:

1. Определить где у паяльника нагреватель, а где термопара. Померить омметром сопротивление на выводах, там где сопротивление меньше, там и будет термопара (нагреватель обычно имеет сопротивление выше термопары, у термопары сопротивление единицы Ом). У термопары соблюсти полярность при подключении.
2. Если сопротивление у измеренных выводов практически не отличается (мощный керамический нагреватель), то определить термопару и её полярность,можно следующим способом;
- нагреть паяльник, отключить его и цифровым мультиметром на самом малом диапазоне (200 милливольт) замерить напряжение на выводах паяльника. На выводах термопары будет напряжение несколько милливольт, полярность подключения будет видна на мультиметре.
3. Если на всех выводах паяльника измеренное сопротивление (попарно) больше 5-10-ти Ом (и более) на двух парных выводах (нагреватель и искомая термопара), то возможно у паяльника вместо термопары стоит терморезистор. Определить его можно с помощью омметра, для этого измеряем сопротивления на выводах, запоминаем, затем нагреваем паяльник. Снова измеряем сопротивление. Там где величина показаний изменится (от запомненного), там и будет терморезистор.
Ниже на рисунке показана распиновка разъёма "Соломоновского" паяльника

4. Подобрать значение R4.

В прикреплённом архиве находятся все необходимые файлы.

Архив для статьи

Современные микросхемы отличаются миниатюрными размерами. Чтобы проводить в них ремонтные и монтажные работы, мастерам требуется особый инструмент с возможностью регулирования режимов пайки. Для этого применяется паяльная станция. Стоит она недешево, поэтому перед умельцами встает вопрос, как сделать паяльную станцию своими руками. Для опытного мастера это не составит большого труда. Основная трудность – в правильной настройке сделанного устройства.

Способы конструирования паяльной станции

Каждый радиолюбитель может придумать оригинальную конструкцию станции, чему подтверждениям являются многочисленные варианты, выложенные в сети. Но все устройства можно объединить в две группы:

  1. Использующие принцип раскаленного воздуха для теплопередачи – наиболее простая конструкция;
  2. Применяющие тепловое излучение от инфракрасного источника. В качестве излучателей используются галогеновые лампы большой мощности, к которым добавляются отражающие элементы.

Конструктивные узлы паяльной станции

Самодельная паяльная станция с использованием фена состоит из следующих конструктивных элементов:

  • микросхема, управляющая нагревом;
  • паяльник;
  • электрический фен;
  • блок питания;
  • внешний кожух.

Главный элемент паяльной станции – фен, состоящий из нагревательной спирали и кулера. При его конструировании учитываются следующие особенности:

  1. Спираль из нихрома наматывается на керамический стержень и изолируется стеклотканью во избежание окисления;
  2. Для создания воздушного потока на выходе делается узкое сопло, диаметром около 0,5 см. Можно поставить втулку из огнестойкого материала;

  1. Мощность нагрева обеспечивается не менее 0,4 кВт;
  2. В качестве вентилятора подойдет компьютерный кулер;
  3. В схему сборки необходимо включить термопару для управления температурным режимом.

Важно! Управление вентилятором должно осуществляться автоматически, его перезапуски вручную сделают процесс пайки невозможным.

  1. Когда собирается паяльная станция своими руками, особое внимание уделяется схеме управления. Простейшее решение – купить микросхему в магазине, например, ATMEGA 328р. При самостоятельной сборке схемы используется плата из стеклотекстолита. Паять следует с максимальной осторожностью, стараясь не допускать излишнего нагрева;

  1. Источником питания может служить импульсный БП на 24 В, обеспеченный защитой от перегрузки. Элементами схемы являются мощные MOS транзисторы, которые защищаются таким образом от избыточного нагрева;

Важно! Оптоэлектронная пара вместе с симистором выносится на обособленную плату, там же размещается охлаждающий радиатор. Применяемые светодиоды не должны быть рассчитаны на ток, больший 20 мА.

  1. Выбор паяльника осуществляется, исходя из мощности 50 Вт и наличия термопары.

Подбирается подходящий металлический кожух для монтажа внутри него элементов управления станцией. Радиатор с выключателем будут размещены на задней панели кожуха, температурный индикатор – спереди.

Нагрев фена, паяльника, мощность наддува подстраиваются при помощи управляемых резисторов (10 кОм).

Заключительный этап – регулировка собранного устройства. Берется термопара с температурным датчиком, и совершается замер реального нагрева жала включенного паяльника. Это же значение температуры надо установить на индикаторе паяльной станции, используя резистор. Идентичная процедура проводится с феном.

Инфракрасная паяльная станция бывает необходима при ремонте микросхем BGA или компьютерных процессоров. Устройство состоит из верхней и нижней нагревательных секций и управляющего блока. Плата для пайки помещается между нагревательными секциями, где основную функцию разогрева выполняет верхняя, а нижняя – служит дополнительным тепловым экраном.

Нагревателями являются галогеновые лампы, для которых монтируются подключающие разъемы в выбранном металлическом корпусе. Идентичная конструкция собирается для обеих секций, различие только в размерах. Для крепления верхней секции используется штативный или другой механизм с возможностью перемещения. Нагрев контролируется термопарами.

Управление нагревателями происходит при помощи микросхемы Arduino MAX6635, подключаемой к ПК. Основная сложность – найти подходящее ПО.

Это только две идеи для самостоятельной сборки паяльной станции, которые возможно дорабатывать или предлагать новые. Творческий подход и умелые руки избавят радиолюбителей от дополнительных финансовых трат и обеспечат их удобными инструментами для работы.

Видео

Ещё пару месяцев назад я даже и не задумывался о самодельной паяльной станции. Собирался покупать Lukey 702, но глянув на цены , так и не понял, за что отдавать 6...8 тысяч.

Недостатки Lukey:

  • Мощность трансформатора слишком мала, трансформатор работает на пределе возможного.
  • Низкое качество трансформаторного железа, он греется даже на холостом ходу, на некоторых станциях ещё и гудит.
  • Неудобная настройка температуры (невозможно быстро накинуть 20-40-60 градусов).
  • Дискретность установки температуры 1 градус, которая в реальности не нужна.
  • В силовой цепи установлен сигнальный разъём (PS/2).
  • Постоянная запитка от сети, даже когда паяльная станция не используется.
  • Нет функции автоотключения.
  • Высокая цена.

Список не маленький, поэтому я решил не покупать Lukey. Начал смотреть в сторону самодельных паялок. Готовые конструкции, чем-то не устраивали. Где-то автор пожалел транзисторов на индикаторы. Где-то через диодный мост прокачивают 2 ампера, и диоды раскаляются как утюги. Где-то автор прокачивает через кренки 35 вольт. В общем однозначно было решено - изобрести свой велосипед.

Итак, представляю Вашему вниманию паяльную станцию ZSS-01.

Основные функции:

  • Удобная настройка температуры.
  • Одновременная индикация текущей и заданной температур.
  • Настраиваемый таймер автоотключения. После срабатывания таймера, станция самообесточивается.
  • Обработка и индикация ошибок. После возникновения ошибки, станция самообесточивается.
  • Нулевое потребление после самообесточивания.
  • Сохранение настроек с использованием циклической записи/чтения.

Схема паяльной станции:

Теперь подробно расскажу про каждый узел схемы.

Узел индикации.
Содержит два семисегментных индикатора. Первый индикатор отображает текущую температуру паяльника, второй - заданную. Индикаторы можно использовать как с общим анодом, так и с общим катодом, установив соответствующую прошивку. Индикаторы подключены через буферную микросхему для снижения нагрузки на порты микроконтроллера. Вместо буфера можно поставить 12 транзисторов, но мне кажется, микросхема и паяется проще, и разводка платы упрощается, и стоит она дешевле, чем горсть транзисторов. Также узел индикации содержит пищалку, которая пищит при возникновении ошибок, а также издаёт щелчки при нажатии кнопок. Пищалка использована обычная, без встроенного генератора. Я поставил пищалку от древней материнской платы. Микроконтроллер генерирует меандр, затем меандр проходит через буферный транзистор и поступает на пищалку.

Узел питания.
Особенностью данной паяльной станции является возможность самообесточивания. Первичная обмотка трансформатора подключена к сети через нормально разомкнутые контакты реле. Когда станция отключена, контакты реле разомкнуты и трансформатор обесточен. Для запуска паяльной станции надо нажать на кнопку "ON", которая кратковременно шунтирует контакты реле. На первичную обмотку поступает напряжение, микроконтроллер запускается. После запуска МК включает реле, шунтируя кнопку. Трансформатор остаётся запитанным до тех пор, пока микроконтроллер не отключит реле. Таким образом, после отключения питания, потребление устройства становится равным нулю, отпадает необходимость использования дежурного источника питания (трансформаторы с дополнительными обмотка ми, итд).

Самообесточивание происходит при:

  • Нажатии кнопки "OFF" на передней панели.
  • Срабатывании таймера автоотключения.
  • Отсутствии нагрева паяльника.
  • Перегреве паяльника.

Вторичная обмотка трансформатора выдаёт 24 вольта. После выпрямления и фильтрации, напряжение поднимается до 34 вольт. Для питания микроконтроллера использован импульсный преобразователь LM2596S-ADJ, понижающий напряжение до 5 вольт. На случай пробоя встроенного ключа преобразователя, на выходе установлен супрессор, снятый с платы жёсткого диска.

Узел измерения температуры.
Для сборки станции я купил паяльник от Lukey 702. В качестве термодатчика используется родная термопара K-типа, расположенная в кончике нагревателя. Для усиления напряжения с термопары используется ширпотребный операционный усилитель LM358. Коэффициент усиления ОУ подобран таким образом, чтобы выходное напряжение 5 вольт соответствовало 1023 градусам, при этом 1 квант АЦП будет равен 1 градусу. Использованный ОУ не имеет Rail-to-Rail выхода, поэтому максимальная измеряемая температура будет примерно 800 градусов. Рабочий диапазон температур станции от 100 до 450 градусов, поэтому измерение до 800 градусов меня устраивает. После сборки станции необходимо произвести калибровку температуры при помощи подстроечного резистора.

Узел управления нагревателем.
Здесь всё просто. Микроконтроллер включает оптопару. Оптопара открывает симистор. Симистор коммутирует нагреватель ко вторичной обмотке трансформатора. ШИМ регулировка не используется, выполняется только включение/отключение нагревателя, так называемый "ключевой режим".

Узел кнопочного управления.
Для управления используется 1 силовая и 5 сигнальных кнопок. Для того, чтобы не портить внешний вид паяльной станции, всё кнопки были использованы одинаковые - силовые. Всё управление сводится к включению/отключению питания, настройке температуры, и настройке таймера автоотключения. При удерживании кнопок выполняется ускоренный перебор значений.

Теперь расскажу про дополнительный функционал.

Таймер автоотключения.
Позволяет задать временной интервал от 1 до 255 часов, по истечении которого паяльная станция самообесточится. Также имеется возможность отключения таймера. Для этого необходимо установить временной интервал, равный 0. Для входа в режим настройки таймера, необходимо одновременно зажать кнопки "-20" и "+20", и не отпуская их включить станцию кнопкой "ON". На первом индикаторе отобразится буква "A", подтверждающая вход в режим настройки автоотключения, а также прозвучит звуковой сигнал. Кнопки "-20" и "+20" нужно отпустить. На втором индикаторе отобразится количество часов, которое можно изменять кнопками "-5" и "+5", при этом изменение будет происходить по 1 часу на каждое нажатие. Для сохранения изменений необходимо нажать кнопку "OFF", при этом паяльная станция самообесточится.

Защита от ненагрева паяльника / КЗ термодатчика.
При включении паяльная станция отсчитывает 1 минуту, после чего включается постоянный контроль температуры паяльника. Если температура ниже 80 градусов (например при обрыве нагревателя), на индикатор высвечивается ошибка "Err 1", звучит продолжительный звуковой сигнал, и станция самообесточивается. Также данная ошибка будет возникать при коротком замыкании термодатчика.

Защита от перегрева паяльника / обрыва термодатчика.
Защита от перегрева может пригодиться, например, при пробое управляющего симистора. Паяльник раскаляется до 470 градусов, срабатывает защита. На индикаторе высвечивается ошибка "Err 2", звучит продолжительный звуковой сигнал, и паяльная станция самообесточивается. Также данная ошибка будет возникать при обрыве термодатчика, благодаря подтягивающему резистору на входе измерительного узла.

Сохранение настроек.
Структура с настройками занимает 3 байта. Микроконтроллер ATmega8 содержит 512 байт EEPROM памяти. Так как размер памяти позволяет сохранить 170 структур, был реализован алгоритм циклической записи/чтения настроек. Алгоритм работает следующим образом. После включения питания, в памяти ищется последняя непустая структура, из неё считываются настройки. Перед отключением питания, ищется первая пустая структура, и в неё записываются настройки. Таким образом, при каждом сохранении, настройки записываются в следующую структуру, и так 170 раз. Когда все структуры заполнятся и кончится свободное место, произойдёт полное стирание памяти, и настройки запишутся в первую структуру. И так по кругу. Применение данного алгоритма позволяет продлить ресурс памяти в 170 раз, а также способствует равномерному износу ячеек.

Теперь немного расскажу о внутренностях станции. Трансформатор использован вот такой:

Фото основной платы в процессе сборки.

Конструктивно паяльная станция состоит из двух плат.

На плате индикации расположены только семисегментные индикаторы.

Один провод не подключен, т.к. не используется точка.

Все остальные компоненты находятся на основной плате.

Размеры плат подогнаны под использование заводского пластикового корпуса B12, имеющего размеры 200x165x70 мм.

Внутренности.

Вот что получилось в итоге. Вид спереди.

Вид сзади. Для подключения паяльника я поставил какой-то советский разъём.

Настройка таймера автоотключения.

Индикация ошибки.

Подведём итоги.

В целом самоделкой доволен. Можно не напрягаясь прибавить 20...40 градусов, и не опасаться за оставленный без присмотра включенный паяльник. Некоторые компоненты были в наличии, кое-что пришлось купить. Список затрат:

  • Паяльник от Lukey 702 === 1013 руб
  • Трансформатор тороидальный ТТП-60 (2х12В, 2.2А) === 800 руб
  • Симистор BTA25-800 === 105 руб
  • Оптопара симисторная MOC3063 === 26 руб
  • Семисегментный индикатор FYT-3631 === 46+46 руб
  • Жало Hakko 900M-T-3C === 500 руб
  • Скотч двусторонний === 75 руб
  • Доставка === 189+175 руб

В итоге станция мне обошлась в 2975 руб.

Планы на будущее:

  • Вместо реле поставить симистор.
  • Сделать автоматический выбор типа используемого термодатчика (термопара или терморезистор).
  • Поменять нагреватель на керамический.
  • Переднюю панель сделать матовой, чтобы не бликовала.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Плата индикации
HG1, HG2 Семисегментный индикатор FYT-3631BD 2 В блокнот
Плата основная
DA1 DC/DC импульсный конвертер

LM2596

1 В блокнот
DA2 Операционный усилитель

LM358

1 В блокнот
DD1 МК AVR 8-бит

ATmega8

1 В блокнот
DD2 ИС шинного приемника, трансмиттера

SN74HC245

1 В блокнот
U1 Оптопара

MOC3063M

1 В блокнот
VS1 Симистор

BTA25

1 В блокнот
VDS1 Диодный мост

W04M

1 В блокнот
VD1 Выпрямительный диод

FR103

1 В блокнот
VD2 Выпрямительный диод

1N4007

1 В блокнот
VD3 Выпрямительный диод

BAV99

1 В блокнот
ZD1 Защитный диод

SMBJ5V0CA

1 В блокнот
VT1, VT2 Биполярный транзистор

C945

2 В блокнот
HA1 Звуковой излучатель DBX05A 1 В блокнот
FU1 Предохранитель 5A 1 В блокнот
FU2 Предохранитель 1A 1 В блокнот
K1 Реле JW1FH-DC12V 1 В блокнот
L1 Катушка индуктивности 120 мкГн 1 В блокнот
L2 Катушка индуктивности Ферритовая бусинка 0805 1 В блокнот
R1 Резистор

680 Ом

1 2 Ватт В блокнот
R2 Резистор

3.01 кОм

1 1% В блокнот
R3 Резистор

1 кОм

1 1% В блокнот
R4 Резистор Перемычка 1206 1 В блокнот
R5, R6 Резистор

360 Ом

2 В блокнот
R7, R18, R19, R21, R22, R24, R25, R26, R27, R28 Резистор

330 Ом

10 В блокнот
R8, R20 Резистор

100 кОм

2 В блокнот
R10, R11, R12, R13, R14, R15 Резистор

10 кОм

6

Многие радиолюбители не могут подобрать подходящий инструмент различных микросхем и компонентов. Паяльная станция своими руками для таких умельцев – это один из лучших вариантов решения всех проблем.

Больше не нужно выбирать из множества несовершенных фабричных устройств, достаточно найти подходящие комплектующие, потратить немного времени и сделать идеальное устройство, удовлетворяющее все требования, своими руками.

Современный рынок предлагает радиолюбителям огромное количество всевозможных видов с разной комплектацией.

В большинстве случаев станции для пайки делятся на:

  1. Контактные станции.
  2. Цифровые и аналоговые устройства.
  3. Индукционные аппараты.
  4. Бесконтактные устройства.
  5. Демонтажные станции.

Первый вариант станций представляет собой паяльник, подключенный к блоку регулировки температуры.

Электрическая схема паяльной станции.

Контактные паяльные устройства делятся на:

  • устройства для работы со свинцовосодержащими припоями;
  • устройства для работы с безсвинцовыми припоями.

Позволяющие плавить безсвинцовый припой, обладают мощными нагревательными элементами. Такой выбор паяльников обусловлен высокой температурой плавления припоя без свинца. Безусловно, благодаря наличию регулятора температуры, подобные аппараты применимы для работы со свинцовосодержащим припоем.

Аналоговые аппараты для пайки регулируют температуру жала при помощи термодатчика. Как только наконечник перегревается, питание отключается. При остывании сердечника питание вновь подается на паяльник и начинается нагрев.

Цифровые устройства управляют температурой паяльника при помощи специализированного ПИД регулятора, который в свою очередь подчиняется своеобразной программе, заложенной в микроконтроллер.

Отличительной особенностью индукционных устройств является нагрев сердечника паяльника при помощи импульсной катушки. В процессе работы происходят колебания высоких частот, образующие в ферромагнетиковом покрытии аппаратуры вихревые токи.

Остановка нагрева происходит из-за достижения ферромагнетиком точки Кюри, после которой меняются свойства металла и прекращается эффект от воздействия высоких частот.

Бесконтактные аппараты для пайки делятся на:

  • инфракрасные;
  • термовоздушные;
  • комбинированные.

Паяльная станция состоит из нагревательного элемента в виде кварцевого или керамического излучателя.

Инфракрасные паяльные станции, по сравнению с термовоздушными, обладают следующими ощутимыми преимуществами:

  • отсутствие необходимости в поиске насадок на паяльный фен;
  • хорошо подходят для работы со всеми видами микросхем;
  • отсутствие термической деформации печатных плат из-за равномерного прогрева;
  • радиодетали не сдуваются воздухом с платы;
  • равномерный прогрев места пропая.

Важно отметить, что инфракрасные устройства для пайки являются профессиональным оборудованием и редко используются простыми радиолюбителями.

Зависимость температуры от времени пайки.

В большинстве случаев инфракрасные аппараты состоят из:

  • верхнего керамического или кварцевого нагревателя;
  • нижнего нагревателя;
  • стола для поддержки печатных плат;
  • микроконтроллера, управляющего станцией;
  • термопар для контроля текущих температур.

Термовоздушные станции для пайки используются для монтажа радиодеталей. В большинстве случает термовоздушными станциями удобно паять компоненты, находящиеся в SMD корпусах. Такие детали имеют миниатюрные размеры и хорошо паяются по средствам подачи на них горячего воздуха из термофена.

Комбинированные устройства, как правило, сочетают в себе несколько видов паяльного оборудования, например, термофен и паяльник.

Демонтажные станции комплектуются компрессором, работающим на втягивание воздуха. Такое оборудование оптимально подходит для снятия излишков припоя или демонтажа ненужных компонентов на печатной плате.

Все мало-мальски приличные станции компонентов в разных корпусах, имеют в наличие такое дополнительное оборудование:

  • лампы подсветки;
  • дымоуловители или вытяжки;
  • пистолеты для демонтажа и всасывания излишков припоя;
  • вакуумные пинцеты;
  • инфракрасные излучатели для прогрева всей печатной платы;
  • термофен для прогрева определенного участка;
  • термопинцет.

Паяльная станция своими руками

Наиболее функциональная и удобная станция – это инфракрасная.

Перед тем, как сделать инфракрасную паяльную станцию своими руками, следует приобрести следующие элементы:

  • галогеновый обогреватель на четырех инфракрасных лампах мощностью 2КВт;
  • верхний инфракрасный нагреватель для паяльной станции в виде керамической инфракрасной головки на 450 Вт;
  • алюминиевые уголки для создания каркаса конструкции;
  • шланг для душа;
  • проволока из стали;
  • нога от любой настольной лампы;
  • программируемый микрокомпьютер, например, Ардуино;
  • несколько твердотельных реле;
  • две термопары для контроля текущей температуры;
  • блок питания на 5 вольт;
  • небольшой экран;
  • зуммер на 5 вольт;
  • крепежные элементы;
  • при необходимости, паяльный фен.

В качестве верхнего нагревателя можно использовать кварцевые или керамические нагреватели.

Изготовление паяльной станции своими руками.

Преимущества керамических излучателей представлены:

  • невидимым спектром излучения, не повреждающим глаза радиолюбителя;
  • более длительным временем безотказной работы;
  • большой распространенностью.

В свою очередь, кварцевые ИК подогреватели обладают следующими плюсами:

  • большая однородность температуры в зоне подогрева;
  • меньшая стоимость.

Этапы сборки ИК паяльной станции представлены ниже:

  1. Монтаж элементов нижнего нагревателя для работы с bga элементами.
    Наиболее простым методом добычи четырех галогеновых ламп служит демонтаж их из старенького обогревателя. После того, как вопрос с лампами решен, следует придумать вид корпуса.
  2. Сборка конструкции паяльного стола и продумывание системы удержания плат на нижнем нагревателе.
    Установка системы крепления печатных плат заключается в отрезке шести кусков алюминиевого профиля и прикреплении их к корпусу при помощи гаек из перфорированной ленты. Получившаяся система крепления позволяет перемещать печатную плату и подстраивать ее под нужды радиолюбителя.
  3. Монтаж элементов верхнего нагревателя и паяльного фена.
    Керамический нагреватель на 450 – 500 Вт можно приобрести в китайском интернет магазине. Для монтажа верхнего подогрева необходимо взять лист металла и согнуть его по размерам нагревателя. После этого верхний нагреватель самодельной ик вместе с феном следует разместить на ножке от старой настолько лампы и подключить к блоку питания.
  4. Программирование и подключение микрокомпьютера.
    Наиболее ответственный этап создания собственного инфракрасного устройства для пайки, включающий: создание корпуса для микроконтроллера с продумыванием места под остальные компоненты и кнопки. В корпусе вместе с контроллером должны быть следующие элементы: два твердотельных реле, дисплей, блок питания, кнопки и соединительные клеммы.

Большинство радиолюбителей предпочитают использовать старые системные блоки в качестве основы корпуса и алюминиевые уголки для крепления всех основных элементов нижнего нагревателя. При подключении ламп рекомендуется использовать штатную проводку разобранного галогенового обогревателя.

По завершению процесса сборки станции следует переходить к непосредственной настройке микроконтроллера. Радиолюбителям, сделавшим самому инфракрасную паяльную станцию, зачастую приходилось использовать микрокомпьютер Ардуино ATmega2560.

Программное обеспечение, написанное специально для устройств, основанных на данном типе контроллера, можно найти в интернете.

Схема

Принципиальная схема инфракрасного паяльника.

Типовая схема паяльной станции включает:

  • блок усилителей термопар;
  • микроконтроллер с экраном;
  • клавиатуру;
  • звуковой сигнализатор, например, компьютерный спикер;
  • элементы питания и поддержки паяльного фена;
  • чертежи элементов детектора нуля;
  • элементы силовой части;
  • блок питания всей аппаратуры.

В большинстве случаев, схема станции представлена следующими микрокомпонентами:

  • опторазвязка;
  • мосфет;
  • симистор;
  • несколько стабилизаторов;
  • потенциометр;
  • подстроечный резистор;
  • резистор;
  • светодиоды;
  • резонатор;
  • несколько резонаторов в СМД корпусах;
  • конденсаторы;
  • переключатели.

Точные маркировки деталей разнятся в зависимости от потребностей и предполагаемых рабочих режимов.

Процесс

Процесс сборки инфракрасной паяльной станции во многом зависит от предпочтений мастера.

Типовой вариант устройства на микроконтроллере Ардуино, устраивающий большинство радиолюбителей, собирается в такой последовательности:

  • подбор необходимых элементов;
  • подготовка радиодеталей и нагревателей к проведения монтажных работ;
  • сборка корпуса паяльной станции;
  • установка нижних предварительных нагревателей для равномерного разогрева массивных печатных плат;
  • установка платы управления комбайном для пайки и ее фиксация при помощи заранее подготовленных крепежных элементов;
  • монтаж верхнего нагревателя и паяльного термофена;
  • установка креплений для термопар;
  • программирование микроконтроллера под определенные условия паяльных работ;
  • проверка всех элементов, включая галогеновые лампы нижнего нагревателя, инфракрасный излучатель и паяльный фен.

Устройство паяльной станции.

После полной сборки инфракрасной станции следует проверить все элементы на работоспособность.

Отдельное внимание нужно уделить проверке корректности работы термопар, поскольку в данной системе отсутствует их компенсация.

Это означает, что при перемене температуры воздуха в помещении термопара начнет измерять температуру с существенной погрешностью.

Проверка головки керамического нагревателя также важна. В случае, если инфракрасный излучатель перегревается, необходимо обеспечить обдув воздухом или охлаждение при помощи дополнительного радиатора.

Настройка

Настройка режимов работы ИК паяльной станции в основном заключается в:

  • установке допустимых режимов работы паяльных фенов;
  • проверке режимов работы нижнего нагревательного элемента;
  • выставлении рабочих температур верхнего кварцевого излучателя;
  • установке специальных кнопок для быстрого изменения параметров нагрева;
  • программировании микроконтроллера.

Особенности устройства паяльной станции.

По мере выполнения паяльных работ может потребоваться изменение температур и режимов.

Такие действия можно произвести при помощи кнопок, связанных с микрокомпьютером:

  • кнопка + должна быть настроена на повышение температуры покупного или самодельного кварцевого излучателя с шагом в 5 – 10 градусов;
  • кнопки – должна понижать температуру также с небольшим шагом.

Основные настройки микрокомпьютера представлены:

  • регулировкой значений P, I и D;
  • подстройкой профилей, в которых прописан шаг изменения тех или иных параметров;
  • настройкой критических температур, при которых станция отключается.

Некоторые конструкторы верхний нагреватель делают из фена. Такой подход подойдет лишь для пайки небольших элементов в SMD корпусах.

Самодельные ИК паяльные станции отлично подойдут для небольшого ремонта дома или в частных мастерских. Благодаря относительной простоте конструкции и широкому функционалу инфракрасные станции пользуются невероятным спросом.

Электрическая схема паяльника.

  1. Грамотная настройка параметров микроконтроллера.
    В случае, если в компьютер внесены неверные параметры, паяльная установка может некачественно пропаивать компоненты и повреждать маску печатных плат.
  2. Надевание средств защиты при выполнении паяльных работ.
    Кварцевый излучатель, в отличие от керамического, при работе порождает излучение на видимой для глаза длине волны. Поэтому, если в устройстве используется кварцевый инфракрасный излучатель рекомендуется надевать специальные защитные очки, защищающие оператора от повреждения зрения.
  3. Электрическая принципиальная схема станции должна содержать только надежные элементы.
    Кроме этого, все конденсаторы и резисторы, используемые при сборке, должны иметь быть выбраны с небольшим запасом.
  4. Контроллер для ИК паяльной станции можно выбрать из популярных моделей Ардуино.
    При желании, контроллер можно изготовить и из неизвестного микрокомпьютера, однако, в этом случае мастеру придется самостоятельно разработать программное обеспечение для работы паяльной станции.
  5. При сборке станции следует предусмотреть разъем для подключения паяльника.
    Иногда, компоненты платы удобнее точечно выпаивать при помощи обычного паяльника или устройства с термофеном вместо жала. Подобное решение можно реализовать, путем проектирования дополнительной термопары для контроля температуры паяльника.
  6. Для пайки с использованием активных флюсов и припоев с высоким содержанием свинца следует обеспечить циркуляцию воздуха.
    Хорошая вытяжка или вентилятор значительно облегчат дыхание оператора и позволяет ему не дышать испарениями вредных металлов.

Заключение

ИК паяльные станции – это одни из лучших установок в самых разных корпусных исполнениях. Сделать паяльную станцию на инфракрасных подогревающих элементах можно даже в домашних условиях.

Как правило, домашние мастера для нижних нагревателей предпочитают использовать мощные галогеновые лампы. Основные распиновки разъемов, параметры микросхем, модели микроконтроллера, инструкции о том, как из бытового фена сделать паяльный и другая информация доступна в интернете.

Каждый, кто пробовал заниматься ремонтом электроники, пришел к осознанию того, что одного лишь паяльника будет мало. Некоторые SMD элементы просто невозможно выпаять без помощи термовоздушного фена. Именно поэтому со временем приобретается паяльная станция, которая включает в себя и то и другое. Большинство дешевых вариантов редко соответствуют индивидуальным предпочтением. Поэтому термовоздушная паяльная станция своими руками не является чем-то недостижимым. В статье будут рассмотрены различные варианты паяльных станций, а также процесс самостоятельной сборки.

Что такое паяльная станция

Если говорить просто, то простая паяльная станция состоит из нескольких основных блоков:

  • блок питания;
  • блок управления;
  • индикаторы;
  • манипуляторы.

Блок питания может быть импульсным или трансформаторным. Первый имеет меньшие габариты и способен выдавать большую мощность. Трансформаторный блок питания имеет характерный звук при работе и для большой мощности требует больших габаритов. В некоторых случаях трансформаторный блок показывает себя более надежным, но это напрямую влияет на вес и габариты паяльной станции. Блок управления паяльной станцией состоит из платы, на которой находятся микроконтроллеры, переменные резисторы и другие элементы, которые отвечают за обратную связь, а также за формирование выходного сигнала для манипуляторов.

В качестве манипуляторов на паяльной станции могут использоваться:

  • паяльник;
  • инфракрасная головка.

На лицевой панели станции располагаются индикаторы. Они выводят показания датчиков температуры, которые находятся в манипуляторах. В большинстве случаев требуется дополнительная калибровка для достижения правильных показаний.

Разновидности станций

Все паяльные станции можно разделить на две большие группы:

  • термовоздушные;
  • инфракрасные.

Каждая из них заточена под свои задачи. В большинстве случаев при проведении профессиональных ремонтах требуется обе разновидности паяльных станций. Первая представляет собой небольшой блок, который имеет один или два манипулятора. Термовоздушная паяльная станция может включать в себя только фен или фен с паяльником. Есть паяльные станции, которые имеют в качестве манипулятора только паяльник. Обычно это те разновидности, которые называются индукционными. В обычных термовоздушных станциях нагрев паяльника происходит за счет керамического или схожего элемента, на который подается напряжение. Этот элемент передает температуру на жало. В индукционных паяльных станциях нагрев происходит за счет действия электромагнитного поля. Энергия сразу передается на жало.

Благодаря такому подходу удалось снизить инертность паяльной станции, повысить время отклика, а также повысить мощность при меньших габаритах. В тех изделиях, где содержатся теплоемкие элементы невозможно обойтись без индукционной стации, т. к. она способна в короткие сроки разогреть большие участки олова. В некоторых случаях даже термовоздушным феном этого сложно добиться. Индукционки стоят в несколько раз дороже обычных станций, но их эффективность гарантирует удовольствие и высокую точность при работе.

Инфракрасные паяльные станции являются отдельным подразделением. По внешнему виду они практически непохожи на два предыдущих вида. Они состоят из двух основных модулей:

  • головы или верхнего подогрева;
  • нижнего подогрева.

Нагрев в них происходит за счет инфракрасных элементов. Благодаря нижнему подогреву плата нагревается равномерно, что позволяет избежать деформации при извлечении или запайке определенных элементов. Чаще всего инфракрасные станции применяются для замены чипов с BGA пайкой. Они представляют собой микросхемы-кристаллы, которые фиксируются на плате с помощью специальных шариков припоя. Некоторые виды таких чипов возможно заменить обычной термовоздушной станцией, но качество будет страдать. Стоимость хорошей инфракрасной станции начинается от одной тысячи долларов.

Обратите внимание! Есть отдельный подвид инфракрасных станций, в которых инфракрасный элемент помещен в манипулятор, который напоминает фен. Такие изделия не получили широкого распространения и применяются редко.

Самостоятельная сборка

Два из перечисленных вида станций для пайки можно собрать самостоятельно. В большинстве случаев используются готовые модули, которые есть в продаже. При желании можно разработать собственную схему и собрать ее, но часто в этом нет необходимости, т. к. дешевле купить готовые компоненты.

Термовоздушная

Самая простая термовоздушная паяльная станция может быть собрана из обычного паяльника. Ниже будет приведена инструкция в фотографиях, как это можно сделать. Для всего процесса сборки потребуются такие компоненты:

  • паяльник с деревянной рукояткой;
  • аквариумный компрессор;
  • шуруповерт;
  • сверло;
  • медицинская капельница;
  • фольга;
  • часть антенны;
  • многожильный провод.

Процесс начинается с того, что необходимо разобрать паяльник. Откручивается винт и высвобождается жало.

Следующим шагом снимается рукоятка, которая понадобится позже. Откручиваются провода, которые соединяют питающий кабель с нагревательным элементом.

Провод вытаскивается из рукоятки и сбоку сверлится небольшое отверстие.

Через проделанное отверстие вставляется провод питания. Чтобы это было легче сделать, можно привязать его к куску проволоки и протянуть ей.

Теперь понадобится заготовленная ранее капельница. Ту часть, на которой располагается резинка, необходимо разрезать пополам, как показано на фото.

После этого оставшаяся часть с трубочкой вставляется в рукоятку, куда раньше приходил провод питания.

Соединение получается довольно надежным и герметичным. Далее к проводу питания, который был продет в просверленное отверстие, подключается нагревательный элемент, изъятый ранее.

Провода важно хорошо изолировать, чтобы не получить удар током. Нагревательный элемент устанавливается на свое место. После этого кусочком фольги обматываются отверстия в нагревательном элементе, которые предназначены для охлаждения, как показано на фото.

Чтобы фольга держалась на своем месте, ее необходимо зафиксировать медной проволокой, обмотав ее вокруг фольги.

Сопло, которое обеспечит направленный поток воздуха, делается из кусочка трубочки от антенны. Она просто вставляется на место жала, как показано на фото ниже.

Отверстие, через которое проходит провод питания, необходимо хорош герметизировать. Подойдет обычный герметик для этих целей. Далее производится подключение аквариумного компрессора ко второй части трубки от капельницы.

Такого результата будет вполне достаточно для работы с мелкими компонентами на платах. Мощность такого фена можно повысить, если сделать намотку нихромовой нити на нагревательный элемент, а также поставить компрессор с большей производительность. В паре с феном можно использовать обычный паяльник. Такие изделия всегда можно взять с собой.

Процесс сборки изделия с более сложным строением описан в видео ниже.

Инфракрасная

Инфракрасную станцию также вполне реально изготовить самостоятельно. Для этой цели понадобится:

  • паяльник;
  • блок питания от ПК;
  • автомобильный прикуриватель.

Блок питания можно использовать старый. Понадобится только одна рабочая линия с напряжением в 12 вольт. Особой мощности не требуется. От паяльника понадобится только деревянная ручка. Ее можно использовать и от любого другого прибора или изготовить самостоятельно. Первым делом необходимо разобрать прикуриватель, чтобы добраться до нагревательного элемента, который находится внутри. На фото показано, как он выглядит.

Следующая задача заключается в том, чтобы закрепить ручку от прикуривателя на рукоятке от паяльника. Для этого можно воспользоваться клеем. Далее необходимо просверлить отверстие в ручке от прикуривателя, чтобы через отверстие можно было подвести питающие провода. Когда провода подведены, можно собрать модуль прикуривателя с керамической проставкой, как показано на фото ниже.

Закрепить всю конструкцию на рукоятке можно с помощью дополнительной металлической пластины. Когда все готов провода подключаются к блоку питания на вывод в 12 вольт. Готовый вариант мини-станции показан ниже на фото.

Станция получается компактной, поэтому ее легко транспортировать и можно запитать от любого источника, который способен выдать 12 вольт постоянного тока. Это может быть даже аккумулятор, поэтому станция получилась полностью автономной. Если собрать небольшой блок из литий-ионных аккумуляторов 18650 с преобразователем на 12 вольт и установить контроллер зарядки, то цены такой станции не будет.

Нагрев мини-станции происходит практически моментально, а максимальная температура может превышать 400 градусов. Выпайке поддаются небольшие элементы, например, конденсаторы и транзисторы, как видно на фото ниже.

Расстояние до платы при пайке должно быть не меньше 10 мм. Кроме миниатюрных SMD элементов, станция с легкостью справляется и с микросхемами в корпусах SOEC. На фото ниже видно прямое тому доказательство.

Также без особых сложностей можно выпаять и более крупные компоненты. Станцию можно немного доработать, чтобы получился удобный вариант для работы. Одним из модулей, который легко использовать дополнительно является диммер, как видно на фото ниже.

Его предназначением является возможность регулировка мощности паяльной станции. В качестве источника питания можно использовать не блок питания от ПК, а блок питания для светодиодной ленты, как видно на фото ниже. Его легко приобрести в любом магазине электротоваров. Общая мощность станции составляет примерно 50 Вт, сила тока, которая потребуется для ее работы достигает 6 ампер. Это стоит учитывать при выборе блока питания.

Минусом такой паяльной стации можно считать отсутствие контакта с элементом, который подвергается пайке. Из-за этого нет возможности убрать излишек припоя, а также невозможно поправить деталь, если она была спозициоинрована со смещением, а припой еще не остыл. Желательно предусмотреть отдельную кнопку включения на рукоятке, которая предотвратит перегревание прикуривателя. Во время работы такой станцией, необходимо держать манипулятор под углом в 90 градусов к элементу, который паяется. Это даст возможность воздействовать на него всей областью нагревателя равномерно.

Дополнительно для успешной пайки мелких элементов понадобится набор пинцетов. Их губки обязательно должны быть острыми, чтобы было легче захватывать миниатюрные компоненты. Кроме того, не обойтись без устройства, которое называется «третья рука». Есть множество его вариаций, но основное предназначение везде одинаковое. Оно заключается в удержании припаиваемых проводов или целых микросхем. Чтобы было легче рассмотреть мелкие компоненты, необходимо хорошее увеличительное стекло или микроскоп. Неотъемлемой частью инструментария мастера является хорошее освещение. Желательно, если оно будет основано на светодиодах, которые не имеют мерцания при работе. Во время пайки с использованием станции не обойтись без флюса. Это специальный раствор, который улучшает адгезию и очищает металл для пайки. Вариант инфракрасной паяльной станции с нижним подогревом также можно собрать самостоятельно. Об этом есть видео ниже.

Резюме

Как видно, собрать собственную паяльную станцию не так сложно, как может показаться. При этом затраты на такую паяльную станцию будут минимальными, а использовать ее можно везде. Если речь идет о профессиональном уровне проведения ремонтных работ, тогда есть смысл подумать о приобретении качественной заводской паяльной стации, которая имеет различные режимы работы и настройки. При обучении нет смысла в покупке дорогой паяльной станции, можно начать с дешевых вариантов паяльных станций. Если обучение будет проходить успешно и за это время не будет потеряно желание к работе, тогда можно задуматься о приобретении профессиональной паяльной станции.