Почему и как поверхностное натяжение. Химия нефти

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Актуальность темы : Знания по естественным наукам необходимы людям не только для объяснения явлений природы, но и для использования в практической деятельности. Проявляя интерес к физике, я может не станут физиком -теоретиком, а буду инженером, техником. Успех моей деятельности будет обеспечиваться не только умением мыслить, но и умением делать, и выбранная мною тема не только актуальна для изучения, она дает возможность к такой успешной деятельности. В окружающем нас мире наряду с тяготением и трением действует ещё одна сила, на которую мы мало обращаем внимания. Эта сила сравнительно невелика и никогда не вызывает впечатляющих эффектов. Тем не менее, мы не можем налить воды в стакан, вообще ничего не можем проделать с какой-либо жидкостью, без того, чтобы не привести в действие эту силу - силу поверхностного натяжения. Она играет большую роль в природе и технике, в физиологии нашего организма и жизни насекомых.

Область исследования - молекулярная физика

Предмет исследования - жидкость (вода, мыльный раствор, молоко, масло растительное.)

Цель: исследование поверхностных явлений в жидкостях и изучение существенных методов определения коэффициента поверхностного натяжения на границе «жидкость - воздух».

Задачи данной работы:

    Изучение основ молекулярной физики, связанных с поверхностными явлениями в жидкостях.

    Изучение применения поверхностного натяжения, его роли в окружающей нас действительности.

    Экспериментально определить коэффициент поверхностного натяжения жидкости методом отрыва капель и натяжения проволочной рамки.

    Сравнить полученные данные с табличными значениями.

Методы исследования: теоретический- сбор информации, анализ, синтез,

обобщение; экспериментальный - постановка вопроса; проектирование исследования; сбор данных; анализ результатов; выводы по эксперименту; публикация результатов.

В теоретической части работы рассматриваются основные теоретические сведения из области молекулярной физики поверхностного слоя жидкости.

В экспериментальной части приведены результаты исследовательской работы. Определены коэффициенты поверхностного натяжения жидкости (вода, молоко, растительное масло, мыльный раствор), и я выяснила как зависит поверхностное натяжение жидкости от температуры и рода жидкости.

2.Теоретическая часть 2.1. Интересные факты о форме жидкости.

Мы привыкли думать, что жидкости не имеют никакой собственной формы. Это неверно. Естественная форма всякой жидкости - шар. Обычно сила тяжести мешает жидкости принимать эту форму, и жидкость либо растекается тонким слоем, если разлита без сосуда, либо же принимает форму сосуда, если налита в него .

Жидкость (в отсутствии силы тяжести или в случае, когда она уравновешена силой Архимеда) принимает сферическую форму, имеющую минимальную поверхность при одном и том же объеме(см. прил.рис.1) . Находясь внутри другой жидкости такого же удельного веса, жидкость по закону Архимеда “теряет” свой вес: она словно ничего не весит, тяжесть на нее не действует — и тогда жидкость принимает свою естественную, шарообразную форму. ..

Известно, что прованское масло плавает в воде, но тонет в спирте. Можно поэтому приготовить такую смесь из воды и спирта, в которой масло не тонет и не всплывает. Введя в эту смесь немного масла посредством шприца, можно странную вещь: масло собирается в большую круглуюкаплю, которая не всплывает и не тонет, а висит неподвижно (см. прил.рис.2) .

2.2. Поверхностное натяжение жидкости.

Молекулы вещества в жидком состоянии расположены почти вплотную друг к другу. В отличие от твердых кристаллических тел, в которых молекулы образуют упорядоченные структуры во всем объеме кристалла и могут совершать тепловые колебания около фиксированных центров, молекулы жидкости обладают большей свободой . Каждая молекула жидкости, также, как и в твердом теле, «зажата» со всех сторон соседними молекулами и совершает тепловые колебания около некоторого положения равновесия. Однако, время от времени любая молекула может переместиться в соседнее вакантное место. Такие перескоки в жидкостях происходят довольно часто; поэтому молекулы не привязаны к определенным центрам, как в кристаллах, и могут перемещаться по всему объему жидкости . Этим объясняется текучесть жидкостей. Из-за сильного взаимодействия между близко расположенными молекулами они могут образовывать локальные (неустойчивые) упорядоченные группы, содержащие несколько молекул. Это явление называется ближним порядком (см. прил.рис.3) .

Жидкость, в отличие от газов, не заполняет весь объем сосуда, в который она налита. Между жидкостью и газом (или паром) образуется граница раздела, которая находится в особых условиях по сравнению с остальной массой жидкости. Молекулы в пограничном слое жидкости, в отличие от молекул в ее глубине, окружены другими молекулами той же жидкости не со всех сторон. Силы межмолекулярного взаимодействия, действующие на одну из молекул внутри жидкости со стороны соседних молекул, в среднем взаимно скомпенсированы и внутри жидкости результирующая сила притяжения, действующая на молекулы со стороны соседних молекул, равна нулю (см. прил. рис.4) . Молекулы поверхностного слоя жидкости притягиваются только молекулами внутренних слоев, и под действием результирующей силы притяжения втягиваются внутрь жидкости. На поверхности остается число молекул, при котором площадь поверхности жидкости оказывается минимальной при данном объеме .

A внеш. =σ S,

Молекулы поверхностного слоя оказывают молекулярное давление на жидкость, стягивая ее поверхность к минимуму. Этот эффект называется поверхностным натяжением. Поверхностное натяжение - явление молекулярного давления на жидкость, вызванное притяжением молекул поверхностного слоя к молекулам внутри жидкости . Но все молекулы, в том числе и молекулы поверхностного слоя, должны находиться в состоянии равновесия. Это равновесие достигается за счет некоторого уменьшения расстояния между молекулами поверхностного слоя и их ближайшими соседями внутри жидкости . При уменьшении расстояния между молекулами возникают силы отталкивания. Если среднее расстояние между молекулами внутри жидкости равноr 0 (r 0 - диаметр молекулы), то молекулы поверхностного слоя упакованы несколько более плотно, а поэтому они обладают дополнительным запасом потенциальной энергии по сравнению с внутренними молекулами . Вследствие крайне низкой сжимаемости наличие более плотно упакованного поверхностного слоя не приводит к сколь-нибудь заметному изменению объема жидкости. Если молекула переместится с поверхности внутрь жидкости, силы межмолекулярного взаимодействия совершат положительную работу . Наоборот, чтобы вытащить некоторое количество молекул из глубины жидкости на поверхность (т. е. увеличить площадь поверхности жидкости), внешние силы должны совершить положительную работу A внеш. , пропорциональную изменению S площади поверхности: :

Коэффициент пропорциональности σ называется коэффициентом поверхностного натяжения или просто поверхностным натяжением (σ> 0) и представляет собой основную характеристику, зависящую от природы сред и их теплового состояния. A - работа, и она служит мерой изменения энергии . Эта энергия должна быть потенциальной, так как она связана с размещением молекул в поверхностном слое при постоянной температуре и общим свойством таких систем является самопроизвольное изменение состояния системы в направлении уменьшения запаса потенциальной энергии, чтобы привести систему в состояние с наименьшей потенциальной энергией. [ 7] .

Направленность процессов к уменьшению потенциальной энергии жидкости обуславливает свойство самопроизвольного сокращения свободной поверхности жидкости до возможного минимального значения . Стремление жидкостей стянуть свою поверхность, сделать ее минимальной может рассматриваться как некоторая сила, действующая вдоль поверхности. Наличие сил поверхностного натяжения делает поверхность жидкости похожей на упругую растянутую пленку, с той только разницей, что упругие силы в пленке зависят от площади ее поверхности (т. е. от того, как пленка деформирована), а силы поверхностного натяжения не зависят от площади поверхности жидкости . Некоторые жидкости, как, например, мыльная вода, обладают способностью образовывать тонкие пленки. Всем хорошо известные мыльные пузыри имеют правильную сферическую форму (см. прил. фото № 5) - в этом тоже проявляется действие сил поверхностного натяжения . Если в мыльный раствор опустить проволочную рамку, одна из сторон которой подвижна, то вся она затянется пленкой жидкости (см. прил.рис.5) . В связи с этим поверхностное натяжение можно определить, как силу, стягивающую поверхность и отнесенную к единице длины.

, — коэффициент поверхностного натяжения. В системе единиц измерения - СИ коэффициент поверхностного натяжения измеряется в джоулях на метр квадратный (Дж/м 2) или в ньютонах на метр (1Н/м = Дж/м 2). Коэффициент поверхностного натяжения - важнейшая величина, характеризующая физические и химические свойства жидкости, используется в технологических процессах и учитывается в объяснении многих явлений: смачивания, кипения, флотации, кавитации. F - cила поверхностного натяжения направлена по касательной к поверхности жидкости, перпендикулярно к участку контура, на который она действует и пропорциональна длине этого участка .

Следующие простые опыты дополнительно поясняют сущность сил поверхностного натяжения. Кольцо из проволоки с прикрепленной к нему в двух точках свободно подвешенной (не натянутой) нитью (см. прил.рис.6)погружается в мыльный раствор. При этом кольцо затягивается тонкой пленкой жидкости, а нить находится в равновесии, приняв случайную форму . Если теперь разрушить пленку по одну сторону от нити, прикоснувшись к пленке нагретой иглой, то нить натянется, приняв форму дуги окружности. Натяжение нити произошло под действием силы поверхностного натяжения со стороны сокращающейся пленки, силы, приложенной к нити, которая в данном случае является линией раздела . Сила эта, разумеется, во всех точках перпендикулярна к нити. Эта сила действовала на нить и. до разрушения пленки, но при этом на нее действовали одинаковые с обеих сторон силы. После же прорыва одной части пленки другая получила возможность уменьшить свою площадь и, как показывает форма на тянувшейся нити, площадь эта стала минимальной .

2.3. Явление смачивания и несмачивания

С поверхностными явлениями тесно связано поведение жидкости на границе с твердым телом. На границе соприкосновения с твердым телом поверхность жидкости может подниматься выше горизонтальной поверхности жидкости или опускаться ниже горизонтальной поверхности. . Жидкость, которая растекается по поверхности твердого тела, называется смачивающей , а жидкость, которая стягивается в каплю, - не смачивающей (см. прил.рис.7).Различие краевых углов в явлениях смачивания и несмачивания объясняется соответствием сил притяжения между молекулами твердого тела и жидкостей и сил межмолекулярного притяжения в жидкостях .. Если силы притяжения между молекулами твердого тела и жидкости> F притяжения между молекулами жидкости, то жидкость будет смачивающей. Если молекулярное притяжение жидкости (внутри)> F притяжения между молекулами твердого тела и жидкости, то жидкость будет несмачивающей .

2.4. Капиллярные явления

«Сapillaris» - волос (в переводе с латинского) - узкие цилиндрические трубки с диаметром около миллиметра и менее называются капиллярами. То есть капиллярные явления - это явления в тонких трубках (капиллярах). В жизни мы часто имеем дело с телами, пронизанными множеством мелких каналов (бумага, пряжа, кожа, различные строительные материалы, почва, дерево). Приходя в соприкосновение с водой или другими жидкостями, такие тела очень часто впитывают их в себя. На этом основано действие полотенца при вытирании рук, действие фитиля в керосиновой лампе.

Очень часто жидкость, впитываясь в пористое тело, поднимается вверх. Капиллярность - явление подъёма или опускания жидкости в капиллярах [ 13] .В случае смачивающей жидкости (А)(см. прил.рис.8)силы притяжения Fж-т между молекулами жидкости и твердого тела (стенки капилляра) превосходят силы взаимодействия Fж между молекулами жидкости, поэтому жидкость втягивается внутрь капилляра, и подъем жидкости в капилляре происходит до тех пор, пока результирующая сила Fв, действующая на жидкость вверх, не уравновесится силой тяжести mg столба жидкости высотой h:(см. прил.рис.8 - В)Fв = mg . Жидкость, не смачивающая стенки капилляров(Б), опускается в нем на расстояние h (см. прил.рис.8) . По третьему закону Ньютона сила Fв, действующая на жидкость, равна силе поверхностного натяжения Fпов., действующей на стенку по линии соприкосновения её с жидкостью: Fв = Fпов [ 8]

3. Практическая работа

3.1 Методы определения поверхностного натяжения . При исследовании поверхностных явлений на границе газ - жидкость наиболее часто используется метод, основанный на измерении поверхностного натяжения этой границы раздела, позволяющий, несмотря на его простоту, получить достаточно надежные данные. [ 15] . Существующие методы определения поверхностного натяжения делятся на три группы: статические, полустатические и динамические .

Статическими методами определяется поверхностное натяжение практически неподвижных поверхностей, образованных задолго до начала измерений и поэтому находящихся в равновесии с объемом жидкости. К этим методам относится метод капиллярного поднятия и метод лежащей или висящей капли (пузырька).

Динамические методы основаны на том, что некоторые виды механических воздействий на жидкость сопровождаются периодическими растяжениями и сжатиями ее поверхности, на которые влияет поверхностное натяжение. Этими методами определяется неравновесное значение . К динамическим методам относятся методы капиллярных волн и колеблющейся струи.

Полустатическими называются методы определения поверхностного натяжения границы раздела фаз, возникающей и периодически обновляемой в процессе измерения (метод максимального давления пузырька и сталагмометрический метод), а также методы отрыва кольца и втягивания пластины. Эти методы позволяют определить равновесное значение поверхностного натяжения, если измерения производятся в таких условиях, что время, в течение которого происходит формирование поверхности раздела, значительно больше времени установления равновесия в системе.

В данной работе для определения коэффициента поверхностного натяжения жидкости я использую полустатический метод: метод отрыва капель (сталагмометрический) и метод проволочной рамки. (втягивания пластины).

3.2 Метод отрыва капель . Наблюдая за отрывом капли жидкости от вертикальной узкой трубки, можно определить коэффициент поверхностного натяжения жидкости. Рассмотрим, как растет капля жидкости(см. прил.рис.9).Размер капли постепенно нарастает, но отрывается она только тогда, когда достигает определенного размера (см. прил.рис.9, а).Пока капля недостаточно велика, силы поверхностного натяжения достаточны, чтобы противостоять силе тяжести и предотвратить отрыв. Перед отрывом образуется сужение - шейка капли (см. прил.рис.9 б) . Пока капля удерживается на конце капиллярной трубки, на нее будут действовать силы: (1) - сила тяжести, направленная вертикально вниз и стремящаяся оторвать каплю; силы поверхностного натяжения, направленные по касательной к поверхности жидкости и перпендикулярно контуру l шейки капли. (см. прил.рис.10). Эти силы стремятся удержать каплю. Результирующая сила поверхностного натяжения направлена вверх и равна (2), где l -длина контура шейки капли. Когда сила тяжести станет равна силе поверхностного натяжения произойдет отрыв капли: (3). Для модулей сил: с учетом (2) и (3) запишем: [ 11]

Так как длина контура шейки каплигде d - диаметр шейки капли. Следовательно, откуда (4), где m- масса одной капли. Формула (4) является рабочей расчетной формулой.

Описанный способ экспериментального определения коэффициента поверхностного натяжения жидкости дает хорошие результаты, несмотря на то, что в действительности отрыв капли происходит не совсем так, как описано выше ..В действительности капля не отрывается по линии окружности шейки. В момент, когда размер капли достигает значения, определяемого равенством (3), шейка начинает быстро сужаться (см. прил.рис.9 б), причем ей сопутствует еще одна маленькая капля (см. прил.рис.9 с). Кроме того, в расчетах, диаметр шейки капли в момент отрыва можно принять равным внутреннему диаметру трубки, так как трубка достаточно узкая и ее диаметр сравним с диаметром шейки капли. Для расчета по формуле (4) необходимо во время измерения следить за чистотой капилляра и воды. Кроме того, коэффициент поверхностного натяжения зависит от температуры исследуемой жидкости: с ростом температуры он уменьшается. При комнатной температуре 20 С табличное значение коэффициента для воды табл = 72,510 3 Н/м. [ 9][ 2] .

Оборудование: сосуд с водой, пустой стакан, микрометр, весы с разновесом, тонкая стеклянная трубка (бюретка).

Ход работы: 1. Собрать установку. Измерить температуры в комнате и d.

2. Определить массу пустого стакана m 1 и накапать 30 капелек чистой воды. (см. прил. фото1).

3. Определить- m 2 - массу стакана с капельками воды. (см. прил. фото 2).

4. Найти массу одной капельки воды

6. Првести опыт 3 раза, используя 40 и 50 капель.

7. Найти δ ср. == [ 11]

│Δδ│ 1 =│δср.-δ 1 │ │Δδ│ 2 =│δср.-δ 2 │Δδ│ 3 =│δср.-δ 3 │

Δδ ср. = и E = 100 %

Данные занести в таблицу (см. прил. таблица № 1). 9. Сравнить рассчитанное значение коэффициента поверхностного натяжения воды с табличным и определить абсолютную и относительную погрешность по формулам: и Вывод : в исследовательской работе я определила коэффициент поверхностно натяжения воды при температуре 19 0 С методом отрыва капель и получила δ = (74,33 + 0,89) мН/м, E = 1,2%. Сравнивая с табличным значением мы получаем абсолютную погрешность Δδ = 1,38 мН/м и относительная погрешность E = 1,9%.

Анализируя полученные результаты видно отличие в погрешности измерений (значение физической величины, полученное экспериментальным путем и настолько близкое к истинному значению ). Погрешность измерения - характеристика точности измерений, и мы её определили разными способами ). Это можно объяснить:

Количество капель как результат счёта есть точное число, и если взять π =3,14 и g = 9,81 м/сек 2 , то относительные погрешности этих величин так же, как и для массы капли, будут слишком малы по сравнению с относительной погрешностью измерения диаметра канала трубки ).

Измерения были косвенные (по формуле);

Исследования проходили при температуре жидкости t = 19 0 С;

Инструментальная погрешность (микрометр, весы);

Действие экспериментатора.

3.3 Метод проволочной рамки

В жидкостях средние расстояния между молекулами значительно меньше, чем в газах. Поэтому силы взаимодействия играют в жидкостях существенную роль. В поверхностном слое жидкости проявляются избыточные межмолекулярные связи: молекулы, находящиеся в этом слое, испытывают направленную внутрь силу притяжения от молекул остальной части жидкости. Сила поверхностного натяжения направлена по касательной к поверхности жидкости, поэтому она не действует на стенки сосуда и тела, погруженные в жидкость. Рассмотрим проволочную прямоугольную рамку длиной l , касающуюся поверхности жидкости (см. прил.рис.11). При поднятии рамки над поверхностью жидкости между рамкой и поверхностью образуется пленка, которая тянет вниз. Сила, удерживающая рамку равна:(1)l - длина проволочной рамки, σ - коэффициент поверхностного натяжения жидкости. Зная эту силу с помощью динамометра, мы найдем коэффициент поверхностного натяжения любой жидкости σ = F / 2l (2).

Оборудование: динамометр, прямоугольная проволочная рамка, сосуд, линейка, исследуемая жидкость.

Ход работы

1. Измерить длину проволочной рамки l

2. Налить в стакан исследуемую жидкость, аккуратно опустить проволочную рамку до соприкосновения с жидкостью, установить стрелку динамометра 0.

Примечание : проследить, чтобы рамка соприкасалось с жидкостью равномерно по всему своему периметру.

4. Аккуратно поднимая динамометра, поднять рамку до его отрыва от жидкости. Заметить и записать в таблицу показания динамометра F в момент отрыва рамки от жидкости. (см. прил. фото 3)

5. Провести опыты для различных жидкостей и вычислить значение коэффициента поверхностного натяжения по формуле (2).

6. Данные записать в таблицу (см. прил. таблица №.2).

7.Полученные значение поверхностного натяжения исследуемых жидкостей сравнить с табличным значением при t = 20 0 С.

8. Определить экспериментально зависимость коэффициента поверхностного натяжения воды от температуры жидкости- t. Данные записать в таблицу (см. прил. таблица №.3).

9. Представить результаты исследования в виде графиков.

10.Определить абсолютную и относительную погрешность измерений.

Вывод: Используя метод проволочной рамки я определила коэффициент поверхностного натяжения жидкостей. По результатам представленными в таблице и на графике следует, что коэффициент поверхностного натяжения зависит от рода жидкости и её температуры. Чем выше температура, тем меньше коэффициент поверхностное натяжение. Результаты погрешностей представлены в таблице № 4.

    Проявления сил поверхностного натяжения

Понятие поверхностного натяжения впервые ввел Я. Сегнер (1752). В 1-й половине 19 в. на основе представления о поверхностном натяжении была развита математическая теория капиллярных явлений (П. Лаплас, С. Пуассон, К. Гаусс, А.Ю. Давидов). Во 2-й половине 19 в. Дж. Гиббс развил термодинамическую теорию поверхностных явлений,в которой решающую роль играет поверхностное натяжение. В 20 в. разрабатываются методы регулирования поверхностного натяжения с помощью ПАВ и электрокапиллярных эффектов (И. Ленгмюр, П. А. Ребиндер, A. H. Фрумкнн) .

Среди современных актуальных проблем - развитие молекулярной теории поверхностного натяжения различных жидкостей, включая расплавленные металлы. . Поверхностное натяжение металла и расплавленного электролита следует принимать во внимание по следующим причинам. При выделении расплавленного металла необходимо, чтобы он хорошо смачивал катод и получался в виде компактного слоя. Металл, не смачивающий катод, образует мелкие капли, что увеличивает поверхность его соприкосновения с электролитом и растворимость в нем. В процессе выделения твердого металла смачиваемость его электролитом способствует образованию защитной пленки и препятствует окислению . Кислород уменьшаетповерхностное натяжение металла, и поэтому с увеличением его содержания в смеси на основе аргона критический ток уменьшается. . Азот повышаетповерхностное натяжение металла, поэтому с увеличением содержания азота в аргоне при одной и той же силе тока размер капель увеличивается. При сварке в среде азота происходит крупнокапельный перенос металла с интенсивным разбрызгиванием .

Рассмотрены методы и технические средства сбора нефтепродуктов с поверхности воды. Поверхностное натяжение является определяющим фактором многих технологических процессов: флотации, пропитки пористых материалов, нанесения покрытий, моющего действия, порошковой металлургии, пайки. Велика роль поверхностного натяжения в процессах, происходящих в невесомости [ 3] .

Силы поверхностного натяжения играют существенную роль в явлениях природы, биологии, медицине, в различных современных технологиях, полиграфии, технике, в физиологии нашего организма .

Без этих сил мы не могли бы писать чернилами. Обычная ручка не зачерпнула бы чернил из чернильницы, а автоматическая сразу же поставила бы большую кляксу, опорожнив весь свой резервуар (см. прил.рис.12). .

Осторожно положить иглу на поверхность воды (см. прил. фото 4) . Поверхностная пленка прогнется и не даст игле утонуть . По тэтой же причине легкие водомерки могут быстро скользить по поверхности воды (см. прил.рис.13),как конкобежцы по льду .

В медицине измеряют динамическое и равновесное поверхностное натяжение сыворотки венозной крови, по которым можно диагностировать заболевание и вести контроль над проводимым лечением (см. прил. рис.14) . Установлено, что вода с низким поверхностным натяжением биологически более доступна. Она легче вступает в молекулярные взаимодействия, тогда клеткам не надо будет тратить энергию на преодоление поверхностного натяжения.

Непрерывно растут объёмы печати на полимерных плёнках благодаря бурному развитию упаковочной индустрии, высокому спросу на потребительские товары в красочной полимерной упаковке . Важное условие грамотного внедрения подобных технологий — точное определение условий их применения в полиграфических процессах.

В полиграфии обработка пластика перед печатью необходима для того, чтобы краска ложилась на материал. Причина заключается в поверхностном натяжении материала. Результат определяется тем, как жидкость смачивает поверхность изделия. Смачивание считается оптимальным, когда капля жидкости остается там же, где она была нанесена. В других случаях жидкость может скатываться в каплю, либо, наоборот, растекаться. Оба случая в равной степени приводят к отрицательным результатам во время переноса краски .

    Заключение Вначале работы мною была поставлена цель исследование поверхностных явлений в жидкостях и изучение существенных методов определения коэффициента поверхностного натяжения жидкости на границе «жидкость - воздух». В ходе исследовательской работы я узнала:

1 ) о существенных экспериментальных методах измерения коэффициента поверхностного натяжения жидкости;

2 ) используя метод отрыва капель и проволочной рамки определила коэффициент поверхностного натяжения жидкости на границе «жидкость - воздух»; 3 ) силы поверхностного натяжения малы и проявляются при малых объемах жидкости;

4 ) поверхностная энергия жидкости зависит рода жидкости, от среды с которой она граничит, а также от температуры жидкости.

5 ) при увеличении температуры внутренняя энергия возрастает и, естественно, уменьшается напряжение в пограничном слое жидкости и, следовательно, уменьшаются силы поверхностного натяжения.

6) мыльная вода, обладает способностью образовывать тонкие пленки. Жидкая пленка превращается в эластичную поверхность, стремящуюся минимизировать свою площадь, и,следовательно, минимизировать энергию натяжения, приходящуюся на единицу площади (см. прил. фото № 6); (эта форма шара).

7 ) силы поверхностного натяжения существуют, играют большую роль в природе, технике и жизни человека. Нельзя было бы намылить руки: пена не образовалась бы. Нарушился бы водный режим почвы, что оказалось бы гибельным для растений. Пострадали бы важные функции нашего организма. Проявления сил поверхностного натяжения столь многообразны.

6. Литература

1. Детлаф, А.А., Яворский Б.М. Курс физики. М.: Высшая школа, 2002. 718 с

2. Касьянов В.А. Физика. 10 кл.: Учебник для общеобразов. учреждений. - 6-е изд., стереотип. - М.: Дрофа, 2008.

3. Кухлинг, Х. Справочник по физике. - М., 1982. - 520с

4. Ландсберга Г.С. Элементарный учебник физики. Том 1: Механика. Теплота. Молекулярная физика. - М.,Книга по Требованию, 2012. - 618 с.

5 .Мякишев Г.Я,Синяков А.З. «Физика: молекулярная физика и термодинамика». Учебник для 10 класса профильного уровня. Москва, 2012.

6. Матвеев, А.Н. Молекулярная физика. М.:Высшая школа,1987. 360с.

7. Пинский А.А. Кабардин О.Ф. Учебник по физике 10 кл. Профильный уровень.13-е изд. - М.: Просвещение, 2011

8. Перельман Я.И. Занимательная физика. В двух книгах. Кн. 1. -20-е изд., стереотип. - М.: Наука, 1979 г.

9. Трофимова, Т.И. Курс физики. - М: Академия, 2007.- 560 с.

10. https://ru.wikipedia.org/wiki/Поверхностное_натяжение

11.Формулы http://studyport.ru/referaty/tochnyje-nauki/3948

12.Свойства жидкостей. Поверхностное натяжение http://www.physics.ru/courses/op25part1/content/chapter3/section/paragraph5/theory.html#.Vo9nifmLTcc

13.Смачивание, капилляр http://phys-bsu.narod.ru/lib/mkt/mkt/207.htm

14.Метод проволочной рамки http://allrefs.net/c12/3smth/p5/

15.Поверхностное натяжение жидкости http://physflash.narod.ru/Search/mechanics/24.htm

16.Интересные факты о форме жидкости http://www.afizika.ru/svojstvazhidkostejgazov/95-estestvennayaformazhidkosti

17. http://www.ngpedia.ru/id181006p1.html

Приложение

Рисунок 1. [ 6] Сечение сферической капли жидкости

Рисунок 2. Плавание капли масла

Рисунок 3 [ 2] Пример ближнего порядка молекул жидкости и дальнего порядка молекул кристаллического вещества: 1 - вода; 2 - лед.

Рисунок 4 Молекулярный механизм поверхностного натяжения

Рисунок 5 [ 10] Подвижная сторона проволочной рамки в равновесии под действием внешней силы и результирующей сил поверхностного натяжения

Рисунок 6. [ 2][ 0] Поверхностное натяжение мыльной пленки

Рисунок 7 [ 14] Условияравновесия на границе жидкость - твердое тело

Q90° - несмачивание

Q - Угол смачивания

Q =0 ° - идеальное не смачивание

Q=180 ° - идеальное смачивание

Рисунок 8. Капилляры [ 13]

А. Б. В.

Рисунок 9. Образование капли жидкости [ 10]

Рисунок 10. [ 12]

Рисунок 11.

Проволочная рамка [ 14]

Рисунок 12. Силы поверхностного натяжения играют существенную роль в явлениях природы, биологии, медицине, в различных современных технологиях, полиграфии, технике

Рисунок 13.

Рисунок 14. Силы поверхностного натяжения играют существенную роль в физиологии нашего организма.

Таблица № 1 Коэффициент поверхностного натяжения воды на границе с воздухом.

Δ δср. (мН/м)

Таблица № 2 Коэффициент поверхностного натяжения жидкостей на границе с воздухом

Таблица № 3 Коэффициент поверхностного натяжения воды на границе с воздухом при разной температуре

Таблица № 4 Абсолютная и относительная погрешность измерения коэффициента поверхностного натяжения разного рода жидкостей

График №1. Зависимость коэффициента поверхностного натяжения жидкости от рода жидкости, и сравнение результатов эксперимента с табличным.

График № 2. Зависимость коэффициента поверхностного натяжения воды от температуры

Фотография № 1

Фотография № 2

Фотография № 3

Фотография № 4

Фотография № 5

Фотография № 6

Жидкость является агрегатным состоянием вещества, промежуточным между газообразным и твердым, поэтому она обладает свойствами и газообразных, и твердых веществ. Жидкости, подобно твердым телам, обладают определенным объемом, а подобно газам, принимают форму сосуда, в котором они находятся. Молекулы газа практически не связаны между собой силами межмолекулярного взаимодействия. В данном случае средняя энергия теплового движения молекул газа гораздо больше средней потенциальной энергии, обусловленной силами притяжения между ними, поэтому молекулы газа разлетаются в разные стороны, и газ занимает весь предоставленный ему объем.

В твердых и жидких телах силы притяжения между молекулами уже существенны и удерживают молекулы на определенном расстоянии друг от друга. В этом случае средняя энергия хаотического теплового движения молекул меньше средней потенциальной энергии, обусловленной силами межмолекулярного взаимодействия, и ее недостаточно для преодоления сил притяжения между молекулами, поэтому твердые тела и жидкости имеют определенный объем.

Рентгеноструктурный анализ жидкостей показал, что характер расположения частиц жидкости промежуточен между газом и твердым телом. В газах молекулы движутся хаотично, поэтому нет никакой закономерности в их взаимном расположении. Для твердых тел наблюдается так называемый дальний порядок в расположении частиц, т.е. их упорядоченное расположение, повторяющееся на больших расстояниях. В жидкостях имеет место так называемый ближний порядок в расположении частиц, т.е. их упорядоченное расположение, повторяющееся на расстояниях, сравнимых с межатомными.

Теория жидкости до настоящего времени полностью не развита. Тепловое движение в жидкости объясняется тем, что каждая молекула в течение некоторого времени колеблется около определенного положения равновесия, после чего скачком переходит в новое положение, отстоящее от исходного на расстоянии порядка межатомного. Таким образом, молекулы жидкости довольно медленно перемещаются по всей массе жидкости, и диффузия происходит гораздо медленнее, чем в газах. С повышением температуры жидкости частота колебательного движения резко увеличивается, возрастает подвижность молекул, что, является причиной уменьшения вязкости жидкости.

На каждую молекулу жидкости со стороны окружающих молекул действуют силы притяжения, быстро убывающие с расстоянием, следовательно, начиная с некоторого минимального расстояния силами притяжения между молекулами можно пренебречь. Это расстояние (приблизительно 10 -9 м) называетсярадиусом молекулярного действия r , а сфера радиуса r - сферой молекулярного действия.

Выделим внутри жидкости какую-либо молекулу А и проведем вокруг нее сферу радиуса r (рис.10.1). Достаточно, согласно определению, учесть действие на данную молекулу только тех молекул, которые находятся внутри сферы

Рис.10.1. молекулярного действия. Силы, с которыми эти молекулы действуют на молекулу А, направлены в разные стороны и в среднем скомпенсированы, поэтому результирующая сила, действующая на молекулу внутри жидкости со стороны других молекул, равна нулю. Иначе обстоит дело, если молекула, например молекула В, расположена от поверхности на расстоянии, меньшем r. В данном случае сфера молекулярного действия лишь частично расположена внутри жидкости. Так как концентрация молекул в расположенном над жидкостью газе мала по сравнению с их концентрацией в жидкости, то равнодействующая силF , приложенных к каждой молекуле поверхностного слоя, не равна нулю и направлена внутрь жидкости. Таким образом, результирующие силы всех молекул поверхностного слоя оказывают на жидкость давление, называемоемолекулярным (иливнутренним). Молекулярное давление не действует на тело, помещенное в жидкость, так как оно обусловлено силами, действующими только между молекулами самой жидкости.

Суммарная энергия частиц жидкости складывается из энергии их хаотического теплового движения и потенциальной энергии, обусловленной силами межмолекулярного взаимодействия. Для перемещения молекулы из глубины жидкости в поверхностный слой надо затратить работу. Эта работа совершается за счет кинетической энергии молекул и идет на увеличение их потенциальной энергии. Поэтому молекулы поверхностного слоя жидкости обладают большей потенциальной энергией, чем молекулы внутри жидкости. Эта дополнительная энергия, которой обладают молекулы в поверхностном слое жидкости, называемаяповерхностной энергией, пропорциональна площади слоя ΔS :

ΔW =σ ΔS ,(10.1)

где σ – коэффициент поверхностного натяжения , определяемый как плотность поверхностной энергии.

Так как равновесное состояние характеризуется минимумом потенциальной энергии, то жидкость при отсутствии внешних сил будет принимать такую форму, чтобы при заданном объеме она имела минимальную поверхность, т.е. форму шара. Наблюдая мельчайшие капельки, взвешенные в воздухе, можем видеть, что они действительно имеют форму шариков, но несколько искаженную из-за действия сил земного тяготения. В условиях невесомости капля любой жидкости (независимо от ее размеров) имеет сферическую форму, что доказано экспериментально на космических кораблях.

Итак, условием устойчивого равновесия жидкости является минимум поверхностной энергии. Это означает, что жидкость при заданном объеме должна иметь наименьшую площадь поверхности, т.е. жидкость стремится сократить площадь свободной поверхности. В этом случае поверхностный слой жидкости можно уподобить растянутой упругой пленке, в которой действуют силы натяжения.

Рассмотрим поверхность жидкости, ограниченную замкнутым контуром. Под действием сил поверхностного натяжения (они направлены по касательной к поверхности жидкости и перпендикулярно участку контура, на который они действуют) поверхность жидкости сократилась и рассматриваемый контур переместился. Силы, действующие со стороны выделенного участка на граничащие с ним участки, совершают работу:

ΔA=f Δl Δx ,

где f=F/ Δl – сила поверхностного натяжения , действующая на единицу длины контура поверхности жидкости. Видно, чтоΔl Δx = ΔS , т.е.

ΔA=fΔS.

Эта работа совершается за счет уменьшения поверхностной энергии, т.е.

ΔΑ W.

Из сравнения выражений видно, что

т.е.коэффициент поверхностного натяжения σ равен силе поверхностного натяжения, приходящейся на единицу длины контура, ограничивающего поверхность . Единица поверхностного натяжения – ньютон на метр (Н/м) или джоуль на квадратный метр (Дж/м 2). Большинство жидкостей при температуре 300К имеет поверхностное натяжение порядка 10 -2 –10 -1 Н/м. Поверхностное натяжение с повышением температуры уменьшается, так как увеличиваются средние расстояния между молекулами жидкости.

Поверхностное натяжение существенным образом зависит от примесей, имеющихся в жидкостях.Вещества, ослабляющие поверхностное натяжение жидкости, называютсяповерхностно-активными веществами (ПАВ). Наиболее известным поверхностно-активным веществом по отношению к воде является мыло. Оно сильно уменьшает ее поверхностное натяжение (примерно с 7,5·10 -2 до 4,5·10 -2 Н/м). ПАВ, понижающими поверхностное натяжение воды, являются также спирты, эфиры, нефть и др.

Существуют вещества (сахар, соль), которые увеличивают поверхностное натяжение жидкости благодаря тому, что их молекулы взаимодействуют с молекулами жидкости сильнее, чем молекулы жидкости между собой.

В строительстве применяют ПАВ для приготовления растворов, используемых при обработке деталей и конструкций, работающих в неблагоприятных атмосферных условиях (высокая влажность, повышенные температуры, воздействие солнечной радиации, и т.д.).

Явление смачивания

Из практики известно, что капля воды растекается на стекле и принимает форму, изображенную на рис.10.2, в то время как ртуть на той же поверхности превращается в несколько сплюснутую каплю. В первом случае говорят, что жидкость смачивает твердую поверхность, во втором – не смачивает ее. Смачивание зависит от характера сил, действующих между молекулами поверхностных слоев соприкасающихся сред. Для смачивающей жидкости силы притяжения между молекулами жидкости и твердого тела больше, чем между молекулами самой жидкости, и жидкость стремится увеличить

поверхность соприкосновения с твердым телом. Для несмачивающей жидкости силы притяжения между молекулами жидкости и твердого тела меньше, чем между молекулами жидкости, и жидкость стремится уменьшить поверхность своего соприкосновения с твердым телом.

К линии соприкосновения трех сред (точка 0 есть ее пересечение с плоскостью чертежа) приложены три силы поверхностного натяжения, которые направлены по касательной внутрь поверхности соприкосновения соответствующих двух сред. Эти силы, отнесенные к единице длины линии соприкосновения, равны соответствующим поверхностным натяжениям σ 12 , σ 13 , σ 23 . Угол θ между касательными к поверхности жидкости и твердого тела называетсякраевым углом. Условием равновесия капли является равенство нулю суммы проекций сил поверхностного натяжения на направление касательной к поверхности твердого тела, т. е.

σ 13 + σ 12 + σ 23 cosθ =0 (10.2)

cosθ =(σ 13 - σ 12)/σ 23 . (10.3)

Из условия вытекает, что краевой угол может быть острым или тупым в зависимости от значений σ 13 и σ 12 . Если σ 13 >σ 12 , то cosθ >0 и угол θ острый, т.е. жидкость смачивает твердую поверхность. Если σ 13 <σ 12 , то cosθ <0 и угол θ – тупой, т. е. жидкость не смачивает твердую поверхность.

Краевой угол удовлетворяет условию (10.3), если

(σ 13 - σ 12)/σ 23 ≤1.

Если условие не выполняется, то капля жидкости ни при каких значениях θ не может находиться в равновесии. Если σ 13 >σ 12 +σ 23 , то жидкость растекается по поверхности твердого тела, покрывая его тонкой пленкой (например, керосин на поверхности стекла),– имеет местополное смачивание (в данном случае θ =0).

Если σ 12 >σ 13 +σ 23 , то жидкость стягивается в шаровую каплю, в пределе имея с ней лишь одну точку соприкосновения (например, капля воды на поверхности парафина), – имеет местополное несмачивание (в данном случае θ =π).

Смачивание и несмачивание являются понятиями относительными, т.е. жидкость, смачивающая одну твердую поверхность, не смачивает другую. Например, вода смачивает стекло, но не смачивает парафин; ртуть не смачивает стекло, но смачивает чистые поверхности металлов.

Явления смачивания и несмачивания имеют большое значение в технике. Например, в методе флотационного обогащения руды (отделение руды от пустой породы) ее, мелко раздробленную, взбалтывают в жидкости, смачивающей пустую породу и не смачивающей руду. Через эту смесь продувается воздух, а затем она отстаивается. При этом смоченные жидкостью частицы породы опускаются на дно, а крупинки минералов «прилипают» к пузырькам воздуха и всплывают на поверхность жидкости. При механической обработке металлов их смачивают специальными жидкостями, что облегчает и ускоряет обработку поверхности.

В строительстве явление смачивания важно для приготовления жидких смесей (шпаклевки, замазки, строительные растворы для кладки кирпича и приготовления бетона). Необходимо, чтобы эти жидкие смеси хорошо смачивали поверхности строительных конструкций, на которые они наносятся. При подборе компонентов смесей учитывают не только краевые углы для пар смесь-поверхность, но и поверностноактивные свойства жидких компонентов.

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

Исходная величина

Преобразованная величина

ньютон на метр миллиньютон на метр грамм-сила на сантиметр дина на сантиметр эрг на квадратный сантиметр эрг на квадратный миллиметр паундаль на дюйм фунт-сила на дюйм

Напряженность электрического поля

Подробнее о поверхностном натяжении

Общие сведения

Поверхностное натяжение - свойство жидкости противостоять силе, которая на нее действует. По сравнению с другими жидкостями, поверхностное натяжение воды одно из самых высоких. Это свойство воды вызвано ее молекулярной структурой, благодаря которой связи между молекулами намного прочнее, чем у других жидкостей.

Поверхностное натяжение зависит от самой жидкости и ее молекулярной структуры, но также и от того, с каким материалом эта жидкость соприкасается. Когда речь идет о поверхностном натяжении в животном мире и во многих других примерах, приведенных ниже, то обычно рассматривают либо систему вода-воздух, либо водные растворы различных веществ, так как это самые распространенные системы, которые встречаются в природе.

Вычисления поверхностного натяжения

Чтобы увеличить площадь поверхности воды, то есть, чтобы растянуть эту поверхность, нужно совершить механическую работу по преодолению сил поверхностного натяжения. Если к жидкости не приложены другие внешние силы, она стремится принять форму, при которой площадь поверхности этой жидкости минимальна. Как мы увидим ниже, наиболее оптимальной формой является шар. В условиях невесомости жидкость действительно принимает форму шара. Потенциальную энергию поверхностного натяжения находят по формуле:

Ε surf = σ · S

Здесь σ - это коэффициент поверхностного натяжения, а S - общая площадь жидкости. Эту формулу также можно выразить как:

σ = ε surf / S

Как видно из этой формулы, коэффициент поверхностного натяжения σ выражается в джоулях на квадратный метр (Дж/м² = Н/м). То есть, коэффициент поверхностного натяжения при постоянной температуре жидкости равен работе, которую необходимо выполнить, чтобы увеличить поверхность жидкости на единицу площади. Вспомним, что джоуль равен ньютону, умноженному на метр, и получим еще одну единицу для измерения поверхностного натяжения - ньютон на метр (Н/м).

О терминологии

Поверхностное натяжение возникает не только в системах воздух-жидкость. Чаще всего, когда говорят о силе на длину, имеют ввиду поверхностное натяжение в системах жидкость-газ. Иногда речь идет о системах жидкость-жидкость, которые тоже имеют поверхностное натяжение. Пример системы жидкость-жидкость, в котором можно говорить о поверхностном натяжении - это лавовые лампы. Когда лампа выключена, то парафин в ней находится в твердом состоянии, но когда она включена, он нагревается, тает, и поднимается вверх, так как в нагретом состоянии парафин легче жидкости, в которой он находится, а в холодном - тяжелее.

Механизм работы поверхностного натяжения

Каждая молекула в жидкости действует на окружающие молекулы с определенной силой. Соответственно, на каждую молекулу также действует ряд сил из разных направлений со сторон других молекул. Действие этих сил между молекулами показано на иллюстрации. Эти силы возникают благодаря тому, что атомы водорода и кислорода, из которых состоит вода, притягиваются друг к другу из-за разности зарядов (отрицательный заряд кислорода притягивается к положительному заряду водорода). Эти силы притягивают молекулы в разные стороны, по направлению друг к другу.

Ситуация с молекулами на поверхности вещества состоит немного иначе, так как величина силы, с которой молекулы воздуха действуют на молекулы воды намного меньше, чем силы, с которой молекулы воды действуют друг на друга. Как показано на иллюстрации, силы, действующие на молекулы на поверхности жидкости, меньше, чем силы, действующие на все остальные молекулы внутри вещества. Силы, действующие на эти молекулы, действуют на них со сторон, с которых они окружены другими молекулами воды, но не с поверхности. Благодаря этому молекулы на поверхности притягиваются внутрь жидкости с большей силой, чем они притягиваются в сторону поверхности. Из-за этого на поверхности образуется намного более «прочный» слой воды. Силы, действующие на молекулы на поверхности, заставляют поверхность сжиматься, чтобы как можно сильнее уменьшить площадь поверхности. По сравнению с другими связями, эти связи намного труднее разрушить.

Силы, которые действуют на молекулы воды, обусловливают наличие двух свойств воды -адгезии и когезии . Когезия - это свойство молекул одного и того же вещества притягиваться друг к другу. Как мы увидели из предыдущих примеров, молекулы воды обладают высокой когезией. Именно благодаря когезии возможно поверхностное натяжение.

Адгезия, наоборот, свойство молекул разных веществ или материалов притягиваться друг к другу. Например, если адгезия между жидкостью и сосудом велика, то жидкость «взбирается» по поверхности сосуда, в то время как область в центре жидкости остается на месте. Это хорошо видно на примере воды в стеклянном сосуде - вода образует вогнутый мениск , если налить ее в узкий сосуд.

Кончено, вогнутый мениск образуется в любом стеклянном сосуде, если тот не слишком полон, но этот эффект намного легче увидеть в узком сосуде, например в трубке. Стоит заметить, что на иллюстрации полного стакана мениск выпуклый . Это вызвано тем, что воде не за что «зацепиться», кроме как за другие молекулы воды. Выпуклая форма мениска вызвана когезией между молекулами воды. Процесс образования выпуклого мениска похож на процесс формирования капель воды, который описан ниже.

Если адгезия между поверхностью вещества и жидкости мала, то мениск будет выпуклым. Это вызвано тем, что молекулы жидкости притягиваются к другим молекулам жидкости сильнее, чем они притягиваются к поверхности сосуда. Наглядный пример такого мениска: ртуть. Если у вас есть измерительный прибор с ртутью внутри, например термометр, то вы легко увидите этот мениск.

Примеры поверхностного натяжения в работе

Примеры поверхностного натяжения в быту и технике окружают нас повсеместно. Легче всего увидеть эффект поверхностного натяжения в системах вода-воздух.

Капли воды

Образование капель сферической формы также происходит благодаря силам, которые притягивают молекулы поверхности жидкости внутрь. Представим каплю, как ее часто рисуют дети - ее форма совсем не сферическая, а продолговатая, удлиненная сверху и округленная снизу. Самое распространенное изображение капли имеет такую форму потому, что мы чаще всего видим капли именно такими, когда на них действуют различные силы. Например, так выглядят капли, которые скатываются по поверхности листьев и веток деревьев, а потом стекают вниз.

Когда капля еще не стекла с поверхности, на которой она находится, на нее действует несколько сил, включая силу притяжения. Вода легко изменяет форму, и капля, перед тем как упасть вниз, растянута и представляет собой висячую каплю . Нам хорошо знакома эта форма, так как такие капли, в отличие от сферических, движутся довольно медленно, и их легко увидеть.

По мере того, как капля растягивается, она достигает точки максимального растяжения, после которой силы поверхностного натяжения не могут больше удерживать молекулы капли как единое целое. Капля отрывается от других молекул воды и падает вниз. Пока она летит вниз, влияние окружающих сил на нее уменьшается, и благодаря поверхностному натяжению ее форма становится сферической, как мы обсудили выше.

Как видно на фотографии кофейной капли, которая падает в чашку из кофеварки эспрессо, форма этой капли очень близка к сферической, хотя она немного деформирована силой притяжения, которая на нее действует.

Чтобы понять механизм образования сферической капли, можно также рассмотреть поверхностное натяжение с точки зрения энергии, как в определении этого явления выше. Частицы притягиваются к другим частицам с противоположным зарядом, поэтому можно сказать, что у этих частиц есть потенциальная энергия, которая зависит от того, как эти молекулы взаимодействуют с окружающими молекулами. Молекулы на поверхности жидкости не окружены другими молекулами со стороны поверхности, поэтому их потенциальная энергия выше. Такая система стремится уменьшить потенциальную энергию, согласно принципу минимальной потенциальной энергии . Это значит, что молекулы с более высокой потенциальной энергией стремятся уменьшить ее, например, изменяя свою форму. В нашем случае это достигается изменением формы, которую принимает вода.

При постоянном поверхностном натяжении потенциальную энергию можно уменьшить, уменьшив площадь. Важно помнить, что речь идет о площади между молекулами. Рассмотрев формулы вычисления площади различных геометрических фигур заметим, что шар лучше всего подходит для уменьшения площади между молекулами, то есть эта площадь для молекул по наружной поверхности шара минимальная по сравнению с другими геометрическими формами. Эту зависимость можно доказать, используя уравнение Эйлера - Лагранжа .

Изменение поверхностного натяжения при изменении температуры и химического состава вещества

Стоит заметить, что при увеличении температуры поверхностное натяжение уменьшается. Это происходит потому, что при увеличении температуры молекулы становятся более активными и интенсивность их колебаний возрастает. В результате расстояние между молекулами увеличивается и связи между молекулами ослабевают. Некоторые вещества, добавленные в воду, например, мыло, также уменьшают поверхностное натяжение, и это позволяет воде лучше приставать к другим поверхностям.

Пониженное поверхностное натяжение позволяет воде проникать в поры и труднодоступные отверстия, например между волокнами ткани. Это возможно благодаря тому, что молекулы воды легко отделяются друг от друга при пониженном поверхностном натяжении. Именно поэтому ткани, посуду, и другие предметы и поверхности чаще всего моют горячей водой. Моющие средства имеют такой же эффект по уменьшению поверхностного натяжения, что и нагревание, поэтому их также нередко используют для мытья поверхностей, часто в совокупности с горячей водой.

Поверхностное натяжение в капиллярах

Выше мы рассмотрели образование мениска благодаря адгезии, но это не единственный пример того, как жидкости ведут себя в узких трубках и капиллярах. Жидкости поднимаются вверх по капилляру или трубке благодаря адгезии, но для того, чтобы жидкость могла подняться по трубке как одно целое, не разорвавшись, кроме адгезии также нужна когезия. Чем уже капилляр, тем выше может подняться жидкость, так как в более широкой трубке поверхностного натяжения может быть недостаточно для того, чтобы поднять большое количество воды вверх.

Примерами этого явления в капиллярах являются бумажные полотенца, которые впитывают пролитую жидкость, спортивная одежду из ткани, которая впитывает пот, и корни, которые впитывают воду из земли и передвигают ее по стволу, к веткам и листьям. Стоит заметить, что такое движение жидкости может быть вызвано не только поверхностным натяжением, но и осмосом. Интересное явление в индуистских храмах, известное как молочное чудо также объясняют работой капилляров. Молочное чудо заключалось в следующем. Посетители одного из индуистских храмов в Индии заметили, что статуи богов на территории храма «пили» молоко, которое перед ними оставляли на тарелочках верующие. Это явление было замечено в некоторых других храмах Индии, а также за пределами страны. Ученые объясняют это явление работой капилляров: камень, из которого были высечены статуи был пористым, и молоко поднималось по капиллярам внутрь статуй.

Как видно из этих примеров, без поверхностного натяжения не было бы и явлений движения жидкости по капиллярам. Жидкость может пристать к стенкам сосуда, если адгезия между жидкостью и материалом сосуда высока, но без поверхностного натяжения она не может поползти вверх, так как она не может двигаться как одно целое.

Предметы, плавающие на поверхности жидкости

Предметы, которые не намокают в жидкости и имеют плотность выше плотности воды, могут держаться на поверхности воды за счет равновесия между силами, благодаря которым возникает поверхностное натяжение и силам, которые тянут тело вниз, например весом тела. Здесь мы говорим только о телах из водостойких материалов. Если вода проникает внутрь материала или пристает к оболочке, то картина значительно усложняется. Это свойство тела оставаться на поверхности легко продемонстрировать на примере скрепки или иголки, плавающей на поверхности воды. Осторожно опустим скрепку в воду, стараясь не прилагать силу, большую силы поверхностного натяжения. Чтобы уменьшить количество воды, которое пристает к поверхности скрепки и заставляет ее опуститься под воду, покроем скрепку маслом. Если мы опустили скрепку на воду достаточно аккуратно, то она останется на поверхности воды.

Форма капель, которые пристали к твердой поверхности

В описанных ранее примерах мы увидели, что капли воды стремятся достичь сферической формы, чтобы уменьшить потенциальную энергию в системе. Иногда невозможно достичь формы шара, поэтому капли принимают форму, наиболее к нему близкую. Если капля воды упала на твердую поверхность и пристала к ней, то нижняя часть капли, которая соприкасается с этой поверхностью, примет форму этой поверхности, например, становится плоской. Это происходит потому, что сила притяжения притягивает каплю к поверхности. Поверхность капли, которая соприкасается только с воздухом, будет, наоборот, приближена к форме шара. В результате, капли на плоских поверхностях, например на листе или на стекле, приобретает форму полушария.

Когда капли падают на твердую поверхность, они принимают форму, которая позволяет уменьшить площадь, и остаются в таком виде до тех пор, пока равновесие между силами не нарушается настолько, что поверхностное натяжение не может больше удерживать каплю на поверхности в этой форме. Например, капли росы остаются на ткани палатки до тех пор, пока они не соприкоснутся с другой поверхностью. Когда капли образовались снаружи, если потрогать ткань палатки изнутри и убрать руку, то поверхностное натяжение нарушится настолько, что капли проникнут через ткань палатки и вода останется на пальцах.

Интересное явление можно увидеть, если налить в бокал алкогольный напиток, например вино, особенно когда это вино с высоким содержанием алкоголя. На стенках этого бокала образуются капли воды, известные под названием «слезы вина» .

Это явление вызвано рядом факторов, включая разницу в поверхностном натяжении этилового спирта и воды. Как мы уже упоминали выше, поверхностное натяжение воды велико, по сравнению с другими жидкостями. Оно во много раз превышает поверхностное натяжение этилового спирта. В смесях воды и спирта, как, например, в вине, молекулы воды притягиваются друг к другу больше, чем к молекулам спирта. Из-за этого вода «убегает» от молекул спирта, вверх по стенкам бокала. Другими словами, вода движется от молекул этанола по направлению к молекулам воды.

В вине в бокале этанол, конечно, есть, но на поверхности стакана над уровнем вина его нет, поэтому вода движется именно вверх по стенкам бокала. При этом на стенках над уровнем вина образуются капли, похожие на слезы. Отсюда и название этого явления.

Чем больше воды собирается в капле, и чем выше она поднимается, тем сложнее ей удерживаться на стекле только благодаря поверхностному натяжению. В конце концов, капля стекает назад в стакан. Чем выше содержание спирта в вине, тем более выражен этот эффект.

Поверхностное натяжение в медицинской диагностике

Врачи используют информацию о поверхностном натяжении вещества, чтобы определить его содержание в смеси. Например, для некоторых форм желтухи характерно высокое содержание желчных солей в моче. Присутствие этих солей понижает поверхностное натяжение мочи, и поэтому их содержание можно определить, проверив, всплывает ли или тонет определенное вещество в моче, в нашем случае - порошок серы. Он не тонет в моче здорового пациента, но если в ней есть примесь желчных солей, то поверхностное натяжение недостаточно, и порошок серы тонет. Этот тест называют тестом Хэя .

В природе

Измерение поверхностного натяжения

Есть несколько способов найти поверхностное натяжение, используя различные измерительные приборы. Ниже рассмотрим несколько широко известных измерительных систем.

В устройствах первого типа измеряется сила, приложенная к измерительному прибору в результате поверхностного натяжения. При измерении по методу отрыва кольца дю Нуи и методу дю Нуи–Падэя оценивается сила, необходимая для поднятия с поверхности жидкости кольца или иглы, соответственно. Согласно третьему закону Ньютона, сила, приложенная к кольцу или игле благодаря поверхностному натяжению, когда мы поднимаем их с поверхности жидкости, равна по величине силе, которая нужна, чтобы поднять эти предметы с поверхности воды. То есть, измеряя силу, которая нужна для поднятия эти предметов, мы также получаем величину силы, которая препятствует их подъему.

Метод Вильгельми измеряет силу, которая действует на металлическую пластину, погруженную в жидкость, поверхностное натяжение которой измеряют. Жидкость пристает к пластине, к кольцу или к игле (как в предыдущих методах измерения), и поверхностное натяжение удерживает молекулы жидкости, приставшие к поверхности, а также и остальные молекулы вместе, как единое целое. То есть, жидкость «не отпускает» пластину, кольцо или иглу. Материал, из которого изготовлена пластина, известен, также как и то, насколько сильно вода пристает к этому материалу, и это учитывают при вычислении силы.

Поверхностное натяжение можно также найти, используя вес капель воды, которые падают из вертикальной трубки или капилляра. Этот метод называется сталагмометрическим , а устройство, которым измеряют поверхностное натяжение - сталогмометром. Поверхностное натяжение жидкости легко вычислить по весу капли, так как вес и поверхностное натяжение взаимосвязаны. Если известен диаметр трубки, то вес капли можно определить по количеству капель в определенном количестве жидкости.

Метод определения по форме висящей капли похож на предыдущий тем, что в нем также используют каплю для определения силы поверхностного натяжения. В этом случае измеряют насколько капля может удлиниться перед тем, как она отделится от остальной жидкости и упадет вниз.

Существуют также измерительные приборы, которые раскручивают жидкость и газ (для систем жидкость-газ) до тех пор, пока система не достигнет равновесия, и форма вещества не станет постоянной. При этом определяют поверхностное натяжение по форме вещества с меньшей плотностью. Этот метод измерения поверхностного натяжения называютметодом вращающейся капли .

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

На этом уроке пойдет речь о жидкостях и их свойствах. С точки зрения современной физики, жидкости являются наиболее сложным предметом исследований, потому что по сравнению с газами уже нельзя говорить о пренебрежимо малой энергии взаимодействия между молекулами, а по сравнению с твердыми телами нельзя говорить об упорядоченном расположении молекул жидкости (в жидкости отсутствует дальний порядок). Это приводит к тому, что жидкости обладают рядом интереснейших свойств и их проявлений. Об одном таком свойстве и пойдет речь на этом уроке.

Для начала, обсудим особые свойства, которыми обладают молекулы приповерхностного слоя жидкости по сравнению с молекулами, находящимися в объеме.

Рис. 1. Отличие молекул приповерхностного слоя от молекул, находящихся в объеме жидкости

Рассмотрим две молекулы А и Б. Молекула А находится внутри жидкости, молекула Б - на ее поверхности (Рис. 1). Молекула А окружена другими молекулами жидкости равномерно, поэтому силы, действующие на молекулу А со стороны молекул, попадающих в сферу межмолекулярного взаимодействия, скомпенсированы, или их равнодействующая равна нулю.

Что же происходит с молекулой Б, которая находится у поверхности жидкости? Напомним, что концентрация молекул газа, который находится над жидкостью, значительно меньше, чем концентрация молекул жидкости. Молекула Б с одной стороны окружена молекулами жидкости, а с другой стороны - сильно разреженными молекулами газа. Поскольку со стороны жидкости на нее действует гораздо больше молекул, то равнодействующая всех межмолекулярных сил будет направлена внутрь жидкости.

Таким образом, для того чтобы молекула из глубины жидкости попала в поверхностный слой, нужно совершить работу против не скомпенсированных межмолекулярных сил.

Вспомним, что работа - это изменение потенциальной энергии, взятое со знаком минус.

Значит, молекулы приповерхностного слоя, по сравнению с молекулами внутри жидкости, обладают избыточной потенциальной энергией.

Эта избыточная энергия является составляющей внутренней энергии жидкости и называется поверхностной энергией . Обозначается она, как , и измеряется, как и любая другая энергия, в джоулях.

Очевидно, что чем больше площадь поверхности жидкости, тем больше таких молекул, которые обладают избыточной потенциальной энергией, а значит тем больше поверхностная энергия. Этот факт можно записать в виде следующего соотношения:

,

где - площадь поверхности, а - коэффициент пропорциональности, который мы назовем коэффициентом поверхностного натяжения , этот коэффициент характеризует ту, или иную жидкость. Запишем строгое определение этой величины.

Поверхностное натяжение жидкости (коэффициент поверхностного натяжения жидкости) - это физическая величина, которая характеризует данную жидкость и равна отношению поверхностной энергии к площади поверхности жидкости

Измеряется коэффициент поверхностного натяжения в ньютонах, деленных на метр.

Обсудим, от чего зависит коэффициент поверхностного натяжения жидкости. Для начала, вспомним, что коэффициент поверхностного натяжения характеризует удельную энергию взаимодействия молекул, а значит факторы, изменяющие эту энергию, изменят и коэффициент поверхностного натяжения жидкости.

Итак, коэффициент поверхностного натяжения зависит от:

1. Природы жидкости (у «летучих» жидкостей, таких как эфир, спирт и бензин, поверхностное натяжение меньше, чем у «нелетучих» - воды, ртути и жидких металлов).

2. Температуры (чем выше температура, тем меньше поверхностное натяжение).

3. Наличие поверхностно активных веществ, уменьшающих поверхностное натяжение (ПАВ), например мыла или стирального порошка.

4. Свойства газа, граничащего с жидкостью.

Отметим, что коэффициент поверхностного натяжения не зависит от площади поверхности, так как для одной отдельно взятой приповерхностной молекулы абсолютно неважно, сколько таких же молекул вокруг. Обратите внимание на таблицу, в которой приведены коэффициенты поверхностного натяжения различных веществ, при температуре :

Таблица 1. Коэффициенты поверхностного натяжения жидкостей на границе с воздухом, при

Итак, молекулы приповерхностного слоя обладают избыточной потенциальной энергией по сравнению с молекулами в объеме жидкости. В курсе механики было показано, что любая система стремится к минимуму потенциальной энергии. Например, тело, брошенное с некоторой высоты, будет стремиться упасть вниз. Кроме того, вы чувствуете себя намного комфортнее лёжа, поскольку в этом случае максимально низко расположен центр масс вашего тела. К чему приводит стремление уменьшить свою потенциальную энергию в случае жидкости? Поскольку поверхностная энергия зависит от площади поверхности, значит, любой жидкости энергетически невыгодно иметь большую площадь поверхности. Иными словами, в свободном состоянии жидкость будет стремиться сделать свою поверхность минимальной.

В этом легко убедиться, экспериментируя с мыльной пленкой. Если окунуть в мыльный раствор некий проволочный каркас, то на нем образуется мыльная пленка, при чем пленка приобретет такую форму, чтобы площадь ее поверхности была минимальной (Рис. 2).

Рис. 2. Фигуры из мыльного раствора

Убедиться в существовании сил поверхностного натяжения можно при помощи простого эксперимента. Если к проволочному кольцу в двух местах привязана нить, причем так, чтобы длина нити была несколько больше длины хорды, соединяющей точки крепления нити, и обмакнуть проволочное кольцо в мыльный раствор (Рис. 3а), мыльная пленка затянет всю поверхность кольца и нить будет лежать на мыльной пленке. Если теперь порвать пленку с одной стороны нити, мыльная пленка, оставшаяся с другой стороны нити, сократится и натянет нить (Рис. 3б).

Рис. 3. Эксперимент по обнаружению сил поверхностного натяжения

Почему же так произошло? Дело в том, что оставшийся сверху мыльный раствор, то есть жидкость, стремится сократить площадь своей поверхности. Таким образом, нить вытягивается вверх.

Итак, в существовании силы поверхностного натяжения мы убедились. Теперь научимся ее рассчитывать. Для этого проведем мысленный эксперимент. Опустим в мыльный раствор проволочную рамку, одна из сторон которой подвижна (Рис. 4). Будем растягивать мыльную пленку, действуя на подвижную сторону рамки силой . Таким образом, на перекладину действуют три силы - внешняя сила и две силы поверхностного натяжения , действующие вдоль каждой поверхности пленки. Воспользовавшись вторым законом Ньютона, можем записать, что

Рис. 4. Вычисление силы поверхностного натяжения

Если под действием внешней силы перекладина переместится на расстояние , то эта внешняя сила совершит работу

Естественно, что за счет совершения этой работы площадь поверхности пленки увеличится, а значит, увеличится и поверхностная энергия, которую мы можем определить через коэффициент поверхностного натяжения:

Изменение площади, в свою очередь можно определить следующим образом:

где - длина подвижной части проволочной рамки. Учитывая это, можно записать, что работа внешней силы равна

Приравнивая правые части в (*) и (**), получим выражение для силы поверхностного натяжения:

Таким образом, коэффициент поверхностного натяжения численно равен силе поверхностного натяжения, которая действует на единицу длины линии, ограничивающей поверхность

Итак, мы еще раз убедились в том, что жидкость стремится принять такую форму, чтобы площадь ее поверхности была минимальной. Можно показать, что при заданном объеме площадь поверхности будет минимальной у шара. Таким образом, если на жидкость не действуют другие силы или их действие мало, жидкость будет стремиться принимать сферическую форму. Так, например, будет вести себя вода в невесомости (Рис. 5) или мыльные пузыри (Рис. 6).

Рис. 5. Вода в невесомости

Рис. 6. Мыльные пузыри

Наличием сил поверхностного натяжения также можно объяснить то, почему металлическая иголка «лежит» на поверхности воды (Рис. 7). Иголка, которую аккуратно положили на поверхность, деформирует ее, увеличивая тем самым площадь этой поверхности. Таким образом, возникает сила поверхностного натяжения, которая стремится уменьшить подобное изменение площади. Равнодействующая сил поверхностного натяжения будет направлена вверх, и она скомпенсирует силу тяжести.


Рис. 7. Иголка на поверхности воды

Таким же образом можно объяснить принцип действия пипетки. Капелька, на которую действует сила тяжести, вытягивается вниз, тем самым увеличивая площадь своей поверхности. Естественно, возникают силы поверхностного натяжения, равнодействующая которых противоположна направлению силы тяжести, и которые не дают капельке растягиваться (Рис. 8). Когда вы нажимаете на резиновый колпачок пипетки, вы тем самым создаете дополнительное давление, которое помогает силе тяжести, и в результате, капля падает вниз.

Рис. 8. Принцип работы пипетки

Приведем еще один пример из повседневной жизни. Если опустить кисточку для рисования в стакан с водой, то ее волоски распушатся. Если теперь вынуть эту кисточку из воды, то вы заметите, что все волоски прилипли друг к другу. Это связано с тем, что площадь поверхности воды, налипшей на кисточку, в таком случае будет минимальной.

И еще один пример. Если вы захотите построить замок из сухого песка, это у вас вряд ли получится, поскольку песок будет рассыпаться под действием силы тяжести. Однако если вы намочите песок, то он будет сохранять свою форму благодаря силам поверхностного натяжения воды между песчинками.

Наконец, отметим, что теория поверхностного натяжения помогает найти красивые и простые аналогии при решении более сложных физических задач. Например, когда нужно построить лёгкую и в то же время прочную конструкцию, на помощь приходит физика того, что происходит в мыльных пузырях. А построить первую адекватную модель атомного ядра удалось, уподобив это атомное ядро капле заряженной жидкости.

Список литературы

  1. Г. Я. Мякишев, Б. Б. Буховцев, Н. Н. Сотский. «Физика 10». - М.: Просвещение, 2008.
  2. Я. Е. Гегузин «Пузыри», Библиотека Квант. - М.: Наука, 1985.
  3. Б. М. Яворский, А. А. Пинский «Основы физики» т. 1.
  4. Г. С. Ландсберг «Элементарный учебник физики» т. 1.
  1. Nkj.ru ().
  2. Youtube.com ().
  3. Youtube.com ().
  4. Youtube.com ().

Домашнее задание

  1. Решив задачи к данному уроку, вы сможете подготовиться к вопросам 7,8,9 ГИА и вопросам А8, А9, A10 ЕГЭ.
  2. Гельфгат И.М., Ненашев И.Ю. «Физика. Сборник задач 10 класс» 5.34, 5.43, 5.44, 5.47 ()
  3. Опираясь на задачу 5.47, определите коэффициент поверхностного натяжения воды и мыльного раствора.

Список вопросов-ответов

Вопрос: Почему поверхностное натяжение меняется с изменением температуры?

Ответ: При увеличении температуры, молекулы жидкости начинают двигаться быстрее, и следовательно, молекулы легче преодолевают потенциальные силы притяжения. Что и приводит к уменьшению сил поверхностного натяжения, являющихся потенциальными силами, которыми связываются молекулы приповерхностного слоя жидкости.

Вопрос: Зависит ли коэффициент поверхностного натяжения от плотности жидкости?

Ответ: Да, зависит, поскольку от плотности жидкости зависит энергия молекул приповерхностного слоя жидкости.

Вопрос: Какие существуют способы определения коэффициента поверхностного натяжения жидкости?

Ответ: В школьном курсе изучаютдва способа определениякоэффициента поверхностного натяжения жидкости. Первый - это метод отрыва проволочки, его принцип описан в задаче 5.44 из домашнего задания, второй - метод счета капель, описанный в задаче 5.47.

Вопрос: Почему через некоторое время мыльные пузыри разрушаются?

Ответ: Дело в том, что через некоторое время, под действием силы тяжести пузырь становится толще внизу, чем вверху, и затем под влиянием испарения разрушается в какой-либо точке. Это приводит к тому, что весь пузырь, подобно воздушному шарику, схлопывается под действием не скомпенсированных сил поверхностного натяжения.